Simultaneous removal of C and N from fish effluents in filter reactors: Effect of recirculation ratio on the axial distribution of microbial communities

Simultaneous removal of C and N from fish effluents in filter reactors: Effect of recirculation... We simultaneously removed carbon (C) and nitrogen (N) from fish effluents in compact filter reactors operating at different recirculation ratios (RRs) (2, 10 and without recirculation) to demonstrate microbial coexistence and determine the effect of the RR on the axial bacterial stratification. We also examined the global performance of anoxic, anaerobic and aerobic processes. Microbial communities (bacteria and archaea) were analyzed using 16s rRNA amplification followed by DGGE analyses. Their banding profiles were analyzed using ecological parameters and the most representative bands were sequenced. TOC removal was larger than 98% in the three reactors. The total N removal was 48% for the RR-2 reactor, whereas in the RR-10 reactor, there was no N removal due to the absence of nitrification in the final aerobic step. Coexistence and stratification of microorganisms were observed. The microbial communities were correlated with distinct biochemical processes in each reactor fraction. The RR had a large effect on the distribution of the microbial communities. When the RR increased from 2 to 10, the stratification decreased from 60 to 30%, suggesting a close relationship between reactor performance and the presence of nitrifiers. In the RR-10 reactor, the nitrifier concentration was only 4%. Thus, in combined processes, filter reactors should operate with a moderate RR to favor bacterial stratification and improve performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Environmental Management Elsevier

Simultaneous removal of C and N from fish effluents in filter reactors: Effect of recirculation ratio on the axial distribution of microbial communities

Loading next page...
 
/lp/elsevier/simultaneous-removal-of-c-and-n-from-fish-effluents-in-filter-reactors-E8gJW6tmpH
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0301-4797
D.O.I.
10.1016/j.jenvman.2015.07.013
Publisher site
See Article on Publisher Site

Abstract

We simultaneously removed carbon (C) and nitrogen (N) from fish effluents in compact filter reactors operating at different recirculation ratios (RRs) (2, 10 and without recirculation) to demonstrate microbial coexistence and determine the effect of the RR on the axial bacterial stratification. We also examined the global performance of anoxic, anaerobic and aerobic processes. Microbial communities (bacteria and archaea) were analyzed using 16s rRNA amplification followed by DGGE analyses. Their banding profiles were analyzed using ecological parameters and the most representative bands were sequenced. TOC removal was larger than 98% in the three reactors. The total N removal was 48% for the RR-2 reactor, whereas in the RR-10 reactor, there was no N removal due to the absence of nitrification in the final aerobic step. Coexistence and stratification of microorganisms were observed. The microbial communities were correlated with distinct biochemical processes in each reactor fraction. The RR had a large effect on the distribution of the microbial communities. When the RR increased from 2 to 10, the stratification decreased from 60 to 30%, suggesting a close relationship between reactor performance and the presence of nitrifiers. In the RR-10 reactor, the nitrifier concentration was only 4%. Thus, in combined processes, filter reactors should operate with a moderate RR to favor bacterial stratification and improve performance.

Journal

Journal of Environmental ManagementElsevier

Published: Sep 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off