Simulation of transcontinental wind and solar PV generation time series

Simulation of transcontinental wind and solar PV generation time series The deployment of Renewable Energy Sources (RES) is driving modern power systems towards a fundamental green transition. In this regard, there is a need to develop models to accurately capture the variability of wind and solar photovoltaic (PV) power, at different geographical and temporal scales. This paper presents a general methodology based on meteorological reanalysis techniques allowing to simulate aggregated RES time series over large geographical areas. It also introduces a novel PV conversion approach based on aggregated power curves in order to capture the uncertainty associated to the technical characteristics of individual installations spread across large regions. The proposed methodology is validated using actual power data in Europe and can be applied to represent intermittent generation in network development plans, reliability and market studies, as well as operational guidelines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Simulation of transcontinental wind and solar PV generation time series

Loading next page...
 
/lp/elsevier/simulation-of-transcontinental-wind-and-solar-pv-generation-time-0HCByGAerB
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.11.039
Publisher site
See Article on Publisher Site

Abstract

The deployment of Renewable Energy Sources (RES) is driving modern power systems towards a fundamental green transition. In this regard, there is a need to develop models to accurately capture the variability of wind and solar photovoltaic (PV) power, at different geographical and temporal scales. This paper presents a general methodology based on meteorological reanalysis techniques allowing to simulate aggregated RES time series over large geographical areas. It also introduces a novel PV conversion approach based on aggregated power curves in order to capture the uncertainty associated to the technical characteristics of individual installations spread across large regions. The proposed methodology is validated using actual power data in Europe and can be applied to represent intermittent generation in network development plans, reliability and market studies, as well as operational guidelines.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off