Silver imprinted zinc oxide nanoparticles: Green synthetic approach, characterization and efficient sunlight-induced photocatalytic water detoxification

Silver imprinted zinc oxide nanoparticles: Green synthetic approach, characterization and... Unique and infrequent strategy to greenly synthesize silver imprinted zinc oxide nanoparticles (AgZnO NPs) is presented. A facile and low cost phytosynthetic route using guava leaves aqueous extract succeeded in decorating commercial ZnO with Ag nanoparticles without needing environmentally undesirable chemical reagents. The AgZnO NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet/visible (UV/Vis) spectrophotometry/spectrofluorimetry, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Band gap calculations of Ag(2.5mol%)/ZnO give estimate of (3.03 eV) compared to 3.25 eV for ZnO. indicating good capacity of visible light absorption. This improves the solar energy harvesting characteristics of the phyto-developed AgZnO NPs. Moreover, the photocatalytic efficacy of AgZnO NPs is tested in detoxification of methylene blue (MB) enriched aqueous solutions. Parameters affecting the photodegradation rate like catalyst dosage, amount of Ag loading and pH were investigated and optimized. Under ≈18 min of sunlight-irradiation (800 W/m2), over 22 mg/L of alkaline solution of MB can be efficiently photomineralized using 0.4 g of Ag(2.5%)/ZnO NPs. Under the optimized conditions, the developed photocatalysts show a great stability after 6 folds of photocatalytic cycles reflecting their efficient photocatalytic performance in the long run. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Silver imprinted zinc oxide nanoparticles: Green synthetic approach, characterization and efficient sunlight-induced photocatalytic water detoxification

Loading next page...
 
/lp/elsevier/silver-imprinted-zinc-oxide-nanoparticles-green-synthetic-approach-7rAk2dSGkv
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.02.214
Publisher site
See Article on Publisher Site

Abstract

Unique and infrequent strategy to greenly synthesize silver imprinted zinc oxide nanoparticles (AgZnO NPs) is presented. A facile and low cost phytosynthetic route using guava leaves aqueous extract succeeded in decorating commercial ZnO with Ag nanoparticles without needing environmentally undesirable chemical reagents. The AgZnO NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet/visible (UV/Vis) spectrophotometry/spectrofluorimetry, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Band gap calculations of Ag(2.5mol%)/ZnO give estimate of (3.03 eV) compared to 3.25 eV for ZnO. indicating good capacity of visible light absorption. This improves the solar energy harvesting characteristics of the phyto-developed AgZnO NPs. Moreover, the photocatalytic efficacy of AgZnO NPs is tested in detoxification of methylene blue (MB) enriched aqueous solutions. Parameters affecting the photodegradation rate like catalyst dosage, amount of Ag loading and pH were investigated and optimized. Under ≈18 min of sunlight-irradiation (800 W/m2), over 22 mg/L of alkaline solution of MB can be efficiently photomineralized using 0.4 g of Ag(2.5%)/ZnO NPs. Under the optimized conditions, the developed photocatalysts show a great stability after 6 folds of photocatalytic cycles reflecting their efficient photocatalytic performance in the long run.

Journal

Journal of Cleaner ProductionElsevier

Published: May 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off