Silencing of the RNA-binding protein HuR attenuates hyperalgesia and motor disability in experimental autoimmune encephalomyelitis

Silencing of the RNA-binding protein HuR attenuates hyperalgesia and motor disability in... Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system associated with progressive neuronal loss and axonal degeneration. Neuronal lesions and dysfunction lead often to neuropathic pain, the most prevalent and difficult to treat pain syndrome observed in MS patients. Despite its widespread occurrence, the underlying neural mechanisms for MS pain are not fully understood. For a better clarification of the pathophysiology of MS-associated pain, we investigated the role of HuR, an RNA-binding protein that positively regulates the stability of many target mRNAs, including several cytokines. The influence of HuR in the generation of the hypernociceptive response in a mouse model of relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), an experimental model of MS, was investigated. HuR silencing, obtained through the repeated intrathecal administration of an antisense oligonucleotide (aODN) anti-HuR, completely attenuated hindpaw mechanical allodynia and thermal hyperalgesia developed by RR-EAE mice. Anti-HuR aODN also reduced severity of motor deficits as reflected by a reduction of clinical EAE score and improvement of rotarod performance. RR-EAE mice showed demyelination in spinal cord sections that was significantly reduced by HuR silencing. Double-staining immunofluorescence studies showed a neuronal localization of HuR within dorsal horn spinal cord, consistent with a neuronal mechanism of action. Our findings suggest the involvement of HuR in the hypernociceptive behaviour of RR-EAE mice providing the first pharmacological assessment of an antiallodynic and antihyperalgesic effect of HuR silencing. These data may provide support for HuR modulation as a therapeutic perspective for the management of MS-related neuropathic pain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuropharmacology Elsevier

Silencing of the RNA-binding protein HuR attenuates hyperalgesia and motor disability in experimental autoimmune encephalomyelitis

Loading next page...
 
/lp/elsevier/silencing-of-the-rna-binding-protein-hur-attenuates-hyperalgesia-and-3SAp0fv7BC
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0028-3908
eISSN
1873-7064
D.O.I.
10.1016/j.neuropharm.2017.06.005
Publisher site
See Article on Publisher Site

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system associated with progressive neuronal loss and axonal degeneration. Neuronal lesions and dysfunction lead often to neuropathic pain, the most prevalent and difficult to treat pain syndrome observed in MS patients. Despite its widespread occurrence, the underlying neural mechanisms for MS pain are not fully understood. For a better clarification of the pathophysiology of MS-associated pain, we investigated the role of HuR, an RNA-binding protein that positively regulates the stability of many target mRNAs, including several cytokines. The influence of HuR in the generation of the hypernociceptive response in a mouse model of relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), an experimental model of MS, was investigated. HuR silencing, obtained through the repeated intrathecal administration of an antisense oligonucleotide (aODN) anti-HuR, completely attenuated hindpaw mechanical allodynia and thermal hyperalgesia developed by RR-EAE mice. Anti-HuR aODN also reduced severity of motor deficits as reflected by a reduction of clinical EAE score and improvement of rotarod performance. RR-EAE mice showed demyelination in spinal cord sections that was significantly reduced by HuR silencing. Double-staining immunofluorescence studies showed a neuronal localization of HuR within dorsal horn spinal cord, consistent with a neuronal mechanism of action. Our findings suggest the involvement of HuR in the hypernociceptive behaviour of RR-EAE mice providing the first pharmacological assessment of an antiallodynic and antihyperalgesic effect of HuR silencing. These data may provide support for HuR modulation as a therapeutic perspective for the management of MS-related neuropathic pain.

Journal

NeuropharmacologyElsevier

Published: Sep 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off