Short term wind power forecasting using hybrid variational mode decomposition and multi-kernel regularized pseudo inverse neural network

Short term wind power forecasting using hybrid variational mode decomposition and multi-kernel... In this paper a new hybrid method combining variational mode decomposition (VMD) and single or Multi-kernel regularized pseudo inverse neural network (MKRPINN) is presented for effective and efficient wind power forecasting. The original non-linear and non-stationary time series data is decomposed using VMD approach to prevent the mutual effects among the different modes. The proposed VMD-KRPINN (VMD based kernel regularized pseudo inverse neural network) and VMD-MKRPINN methods are then used to predict wind power generation of a wind farm in the state of Wyoming, USA for different time intervals of 10 min, 30 min, 1 h and 3 h ahead. Comparison with empirical mode decomposition (EMD) based kernel regularized pseudo inverse neural networks is also presented in the paper to validate the superiority of the VMD based wind power prediction models. Also to improve the performance of the proposed EMD-MKPRINN and VMD-MKRPINN models, their parameters are optimized using vaporization and precipitation based water cycle algorithm (VAPWCA). Further a fast reduced version of the VMD-KRPINN is presented in the paper to reduce the execution time substantially using randomly selected support vectors from the data set while resulting in a reasonably accurate forecast. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Short term wind power forecasting using hybrid variational mode decomposition and multi-kernel regularized pseudo inverse neural network

Loading next page...
 
/lp/elsevier/short-term-wind-power-forecasting-using-hybrid-variational-mode-zZ5gOCHR1M
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.10.111
Publisher site
See Article on Publisher Site

Abstract

In this paper a new hybrid method combining variational mode decomposition (VMD) and single or Multi-kernel regularized pseudo inverse neural network (MKRPINN) is presented for effective and efficient wind power forecasting. The original non-linear and non-stationary time series data is decomposed using VMD approach to prevent the mutual effects among the different modes. The proposed VMD-KRPINN (VMD based kernel regularized pseudo inverse neural network) and VMD-MKRPINN methods are then used to predict wind power generation of a wind farm in the state of Wyoming, USA for different time intervals of 10 min, 30 min, 1 h and 3 h ahead. Comparison with empirical mode decomposition (EMD) based kernel regularized pseudo inverse neural networks is also presented in the paper to validate the superiority of the VMD based wind power prediction models. Also to improve the performance of the proposed EMD-MKPRINN and VMD-MKRPINN models, their parameters are optimized using vaporization and precipitation based water cycle algorithm (VAPWCA). Further a fast reduced version of the VMD-KRPINN is presented in the paper to reduce the execution time substantially using randomly selected support vectors from the data set while resulting in a reasonably accurate forecast.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off