Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information

Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on... Photovoltaic (PV) solar power generation is always associated with uncertainties due to solar irradiance and other weather parameters intermittency. This creates a huge barrier in integrating solar power into the grid and biases power industries against deploying PV systems. Thus accurate short-term forecasts are important to efficiently integrate PV systems into the grid. This paper proposes a hybrid forecasting model combining wavelet transform, particle swarm optimization and support vector machine (Hybrid WT-PSO-SVM) for short-term (one-day-ahead) generation power forecasting of a real microgrid PV system. The model is developed by incorporating the interactions of the PV system Supervisory Control and Data Acquisition (SCADA) actual power record with Numerical Weather Prediction (NWP) meteorological data for one year with a time-step of 1 h. In the proposed model, the wavelet is employed to have a considerable impact on ill-behaved meteorological and SCADA data, and SVM techniques map the NWP meteorological variables and SCADA solar power nonlinear relationship in a better way. The PSO is used to optimize the parameters of the SVM to achieve a higher forecasting accuracy. The forecasting accuracy of the proposed model has been compared with other seven forecasting strategies and reveals outperformed performance with respect to forecasting accuracy improvement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information

Loading next page...
 
/lp/elsevier/short-term-photovoltaic-solar-power-forecasting-using-a-hybrid-wavelet-1Ah3li0SZ4
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.11.011
Publisher site
See Article on Publisher Site

Abstract

Photovoltaic (PV) solar power generation is always associated with uncertainties due to solar irradiance and other weather parameters intermittency. This creates a huge barrier in integrating solar power into the grid and biases power industries against deploying PV systems. Thus accurate short-term forecasts are important to efficiently integrate PV systems into the grid. This paper proposes a hybrid forecasting model combining wavelet transform, particle swarm optimization and support vector machine (Hybrid WT-PSO-SVM) for short-term (one-day-ahead) generation power forecasting of a real microgrid PV system. The model is developed by incorporating the interactions of the PV system Supervisory Control and Data Acquisition (SCADA) actual power record with Numerical Weather Prediction (NWP) meteorological data for one year with a time-step of 1 h. In the proposed model, the wavelet is employed to have a considerable impact on ill-behaved meteorological and SCADA data, and SVM techniques map the NWP meteorological variables and SCADA solar power nonlinear relationship in a better way. The PSO is used to optimize the parameters of the SVM to achieve a higher forecasting accuracy. The forecasting accuracy of the proposed model has been compared with other seven forecasting strategies and reveals outperformed performance with respect to forecasting accuracy improvement.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial