Shear strengthening of steel plates using small-diameter CFRP strands

Shear strengthening of steel plates using small-diameter CFRP strands This paper presents the results of a comprehensive research program, including experimental and analytical studies, to examine the use of small-diameter CFRP strands for shear strengthening of steel structures and bridges. The experimental program examined the effectiveness of the proposed strengthening system to increase the shear capacity of steel plates subjected to pure shear stresses using a unique test set up. A nonlinear finite element analysis (FEA), calibrated the experimental results, was used to study parameters which were not included in the experiments. Research findings indicated that the proposed system is effective for shear strengthening of steel structures and eliminated the typical debonding failure commonly observed by CFRP laminates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Shear strengthening of steel plates using small-diameter CFRP strands

Loading next page...
 
/lp/elsevier/shear-strengthening-of-steel-plates-using-small-diameter-cfrp-strands-GKXlLZU01W
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.09.094
Publisher site
See Article on Publisher Site

Abstract

This paper presents the results of a comprehensive research program, including experimental and analytical studies, to examine the use of small-diameter CFRP strands for shear strengthening of steel structures and bridges. The experimental program examined the effectiveness of the proposed strengthening system to increase the shear capacity of steel plates subjected to pure shear stresses using a unique test set up. A nonlinear finite element analysis (FEA), calibrated the experimental results, was used to study parameters which were not included in the experiments. Research findings indicated that the proposed system is effective for shear strengthening of steel structures and eliminated the typical debonding failure commonly observed by CFRP laminates.

Journal

Composite StructuresElsevier

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off