Shear-induced precursors in polyethylene: An in-situ synchrotron radiation scanning X-ray microdiffraction study

Shear-induced precursors in polyethylene: An in-situ synchrotron radiation scanning X-ray... Localized shear flow was imposed by pulling glass fiber in polyethylene (PE) melt below and above its equilibrium melting point (141.6 °C). Immediately after the cessation of shear, the structure around the fiber was investigated with in-situ synchrotron radiation scanning X-ray microdiffraction (SR-μSXRD), which had spot area of 4.2 × 4.5 μm2 and step size of 6 μm. Results indicate that crystalline precursors are induced below equilibrium melting point, as evidenced by the occurrence of crystalline diffractions. Whilst at temperature above equilibrium melting point, no crystalline diffraction is observed. SR-μSXRD measurements on the crystallization behaviors at 127 °C after shearing at 145 °C suggest that non-crystalline precursors are induced, which is supported by three evidences. (i) The occurrence of crystallization near the fiber surface implies shear-induced formation of precursors at 145 °C since the fiber has no ability to induce crystallization at quiescent condition; (ii) No crystalline diffraction is detected immediately after cessation of shear at 145 °C; (iii) The necessity of induction time for the precursors to transform into crystalline nuclei further demonstrates the non-crystalline nature of precursors. The concentration of precursors is observed to reduce with increasing shearing temperature, as evidenced by twisting degree of lamellar crystals after isothermally crystallized at 127 °C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Shear-induced precursors in polyethylene: An in-situ synchrotron radiation scanning X-ray microdiffraction study

Loading next page...
 
/lp/elsevier/shear-induced-precursors-in-polyethylene-an-in-situ-synchrotron-PAvDf1whvZ
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2017.12.021
Publisher site
See Article on Publisher Site

Abstract

Localized shear flow was imposed by pulling glass fiber in polyethylene (PE) melt below and above its equilibrium melting point (141.6 °C). Immediately after the cessation of shear, the structure around the fiber was investigated with in-situ synchrotron radiation scanning X-ray microdiffraction (SR-μSXRD), which had spot area of 4.2 × 4.5 μm2 and step size of 6 μm. Results indicate that crystalline precursors are induced below equilibrium melting point, as evidenced by the occurrence of crystalline diffractions. Whilst at temperature above equilibrium melting point, no crystalline diffraction is observed. SR-μSXRD measurements on the crystallization behaviors at 127 °C after shearing at 145 °C suggest that non-crystalline precursors are induced, which is supported by three evidences. (i) The occurrence of crystallization near the fiber surface implies shear-induced formation of precursors at 145 °C since the fiber has no ability to induce crystallization at quiescent condition; (ii) No crystalline diffraction is detected immediately after cessation of shear at 145 °C; (iii) The necessity of induction time for the precursors to transform into crystalline nuclei further demonstrates the non-crystalline nature of precursors. The concentration of precursors is observed to reduce with increasing shearing temperature, as evidenced by twisting degree of lamellar crystals after isothermally crystallized at 127 °C.

Journal

PolymerElsevier

Published: Jan 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off