Shape-selective fabrication of Cu nanostructures: Contrastive study of catalytic ability for hydrolytically releasing H2 from ammonia borane

Shape-selective fabrication of Cu nanostructures: Contrastive study of catalytic ability for... Ammonia borane, a promising hydrogen store material with the highest H capacity (19.6%), can controllably release H2 gas via suitable catalysis, which thus necessitates search for effective and inexpensive catalysts. We herein report a highly shape-selective fabrication strategy for Cu nanocrystals with the specially-designed nanostructures (nanocube, nanowire and nanotetrahedron, etc) via the same solution reduction route by simply adjusting addition proportion of the reductant and orientation agent. Contrastive studies of the Cu nanocrystals for catalytically hydrolyzing ammonia borane to release H2 amply demonstrate the obviously close correlativity between catalytic ability and the morphologies. In comparison to the ordinary Cu nanoparticles with extremely low or hardly any dehydrogenation activity, all of the regularly-shaped Cu nanocrystals hold the unexpectedly robust catalytic activity, in which the nano-cubed Cu nanocrystals possess the highest catalytic activity almost equivalent to some noble metals, followed by the nanotetrahedrons and nanowires. In theory, the well-designed shape tuning tactics could provide reference for fabricating highly active nano/micro catalysts concerning other metal systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Shape-selective fabrication of Cu nanostructures: Contrastive study of catalytic ability for hydrolytically releasing H2 from ammonia borane

Loading next page...
 
/lp/elsevier/shape-selective-fabrication-of-cu-nanostructures-contrastive-study-of-zlyGQiwPxy
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.10.114
Publisher site
See Article on Publisher Site

Abstract

Ammonia borane, a promising hydrogen store material with the highest H capacity (19.6%), can controllably release H2 gas via suitable catalysis, which thus necessitates search for effective and inexpensive catalysts. We herein report a highly shape-selective fabrication strategy for Cu nanocrystals with the specially-designed nanostructures (nanocube, nanowire and nanotetrahedron, etc) via the same solution reduction route by simply adjusting addition proportion of the reductant and orientation agent. Contrastive studies of the Cu nanocrystals for catalytically hydrolyzing ammonia borane to release H2 amply demonstrate the obviously close correlativity between catalytic ability and the morphologies. In comparison to the ordinary Cu nanoparticles with extremely low or hardly any dehydrogenation activity, all of the regularly-shaped Cu nanocrystals hold the unexpectedly robust catalytic activity, in which the nano-cubed Cu nanocrystals possess the highest catalytic activity almost equivalent to some noble metals, followed by the nanotetrahedrons and nanowires. In theory, the well-designed shape tuning tactics could provide reference for fabricating highly active nano/micro catalysts concerning other metal systems.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off