Severe seizures as a side effect of deep brain stimulation in the dorsal peduncular cortex in a rat model of depression

Severe seizures as a side effect of deep brain stimulation in the dorsal peduncular cortex in a... Deep brain stimulation (DBS) has shown to have antidepressant effects in both human trials and animal studies. However, the optimal target and the underlying therapeutic mechanisms remain to be determined. In this study, we investigated if high frequency (HF) DBS in the dorsal peduncular cortex (DPC) alleviates depressive-like behavior in an experimental model of depression. Surprisingly, HF DBS in the DPC caused acute induction of seizures in ~40% of animals stimulated with clinically relevant stimulation parameters. Reducing the stimulation's amplitude by 50% did not alter seizure occurrence. Electroencephalographic (EEG) recordings showed seizures up to Racine stage IV lasting up to 4 min after cessation of stimulation. We conclude that HF DBS in the DPC is not suitable for mood-related experiments in rats but could be a potential model for seizure induction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Epilepsy & Behavior Elsevier

Severe seizures as a side effect of deep brain stimulation in the dorsal peduncular cortex in a rat model of depression

Loading next page...
 
/lp/elsevier/severe-seizures-as-a-side-effect-of-deep-brain-stimulation-in-the-G1Axt3t9Hj
Publisher
Elsevier
Copyright
Copyright © 2019 Elsevier Inc.
ISSN
1525-5050
D.O.I.
10.1016/j.yebeh.2019.01.007
Publisher site
See Article on Publisher Site

Abstract

Deep brain stimulation (DBS) has shown to have antidepressant effects in both human trials and animal studies. However, the optimal target and the underlying therapeutic mechanisms remain to be determined. In this study, we investigated if high frequency (HF) DBS in the dorsal peduncular cortex (DPC) alleviates depressive-like behavior in an experimental model of depression. Surprisingly, HF DBS in the DPC caused acute induction of seizures in ~40% of animals stimulated with clinically relevant stimulation parameters. Reducing the stimulation's amplitude by 50% did not alter seizure occurrence. Electroencephalographic (EEG) recordings showed seizures up to Racine stage IV lasting up to 4 min after cessation of stimulation. We conclude that HF DBS in the DPC is not suitable for mood-related experiments in rats but could be a potential model for seizure induction.

Journal

Epilepsy & BehaviorElsevier

Published: Mar 1, 2019

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off