Serum persistent organic pollutants levels and stroke risk

Serum persistent organic pollutants levels and stroke risk Knowledge of environmental risk factors for stroke and their role are limited. We performed a case-cohort study to evaluate the association between serum persistent organic pollutants (POPs) level and stroke risk.526 subcohort members and 111 stroke incidence cases were identified from the Korean Cancer Prevention Study-II. Serum levels of POPs were measured using gas chromatography/high-resolution mass spectrometry. The hazard ratios (HRs) for stroke (ischemic, hemorrhagic, and all stroke types) were estimated using the weighted Cox regression model. Age, sex, body mass index, smoking status, physical activity, family history of cardiovascular disease, and hypertension were adjusted in the weighted Cox regression model.After adjusting for potential confounding factors, increased risk for stroke was observed among participants with serum concentration of p,p'-DDE in the highest tertile compared to those in the lowest tertile (HR = 4.10, 95% CI: 1.58, 10.59). A similar association was estimated for PCB118 (HR = 2.33, 95% CI: 1.04, 5.22), PCB156 (HR = 3.42, 95% CI: 1.42, 8.23), and PCB138 (HR = 3.80, 95% CI: 1.48, 9.76). For TEQ, stroke was three times as likely to occur among subjects with TEQ in the highest tertile compared to those in the lowest tertile (HR = 3.12, 95% CI: 1.27, 7.65). PCBs were positively associated with ischemic stroke, but not with hemorrhagic stroke.Elevated serum POPs levels were associated with an increased risk of stroke, especially ischemic stroke. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Transportation Research Part C: Emerging Technologies Elsevier

Serum persistent organic pollutants levels and stroke risk

Loading next page...
 
/lp/elsevier/serum-persistent-organic-pollutants-levels-and-stroke-risk-9PVBQbkVsF
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0968-090X
D.O.I.
10.1016/j.envpol.2017.12.031
Publisher site
See Article on Publisher Site

Abstract

Knowledge of environmental risk factors for stroke and their role are limited. We performed a case-cohort study to evaluate the association between serum persistent organic pollutants (POPs) level and stroke risk.526 subcohort members and 111 stroke incidence cases were identified from the Korean Cancer Prevention Study-II. Serum levels of POPs were measured using gas chromatography/high-resolution mass spectrometry. The hazard ratios (HRs) for stroke (ischemic, hemorrhagic, and all stroke types) were estimated using the weighted Cox regression model. Age, sex, body mass index, smoking status, physical activity, family history of cardiovascular disease, and hypertension were adjusted in the weighted Cox regression model.After adjusting for potential confounding factors, increased risk for stroke was observed among participants with serum concentration of p,p'-DDE in the highest tertile compared to those in the lowest tertile (HR = 4.10, 95% CI: 1.58, 10.59). A similar association was estimated for PCB118 (HR = 2.33, 95% CI: 1.04, 5.22), PCB156 (HR = 3.42, 95% CI: 1.42, 8.23), and PCB138 (HR = 3.80, 95% CI: 1.48, 9.76). For TEQ, stroke was three times as likely to occur among subjects with TEQ in the highest tertile compared to those in the lowest tertile (HR = 3.12, 95% CI: 1.27, 7.65). PCBs were positively associated with ischemic stroke, but not with hemorrhagic stroke.Elevated serum POPs levels were associated with an increased risk of stroke, especially ischemic stroke.

Journal

Transportation Research Part C: Emerging TechnologiesElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off