Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers

Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both... Background: Developmental dyslexia is a specific disorder of reading and spelling that affects 3–9% of school-age children and adults. Contrary to the view that it results solely from deficits in processes specific to linguistic analysis, current research has shown that deficits in more basic auditory or visual skills may contribute to the reading difficulties of dyslexic individuals. These might also have a crucial role in the development of normal reading skills. Evidence for visual deficits in dyslexia is usually found only with dynamic and not static stimuli, implicating the magnocellular pathway or dorsal visual stream as the cellular locus responsible. Studies of such a dissociation between the processing of dynamic and static auditory stimuli have not been reported previously. Results: We show that dyslexic individuals are less sensitive both to particular rates of auditory frequency modulation (2 Hz and 40 Hz but not 240 Hz) and to dynamic visual-motion stimuli. There were high correlations, for both dyslexic and normal readers, between their sensitivity to the dynamic auditory and visual stimuli. Nonword reading, a measure of phonological awareness believed crucial to reading development, was also found to be related to these sensory measures. Conclusions: These results further implicate neuronal mechanisms that are specialised for detecting stimulus timing and change as being dysfunctional in many dyslexic individuals. The dissociation observed in the performance of dyslexic individuals on different auditory tasks suggests a sub-modality division similar to that already described in the visual system. These dynamic tests may provide a non-linguistic means of identifying children at risk of reading failure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Biology Elsevier

Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers

Loading next page...
 
/lp/elsevier/sensitivity-to-dynamic-auditory-and-visual-stimuli-predicts-nonword-rt6MCyk30H
Publisher
Elsevier
Copyright
Copyright © 1998 Elsevier Science Ltd
ISSN
0960-9822
DOI
10.1016/S0960-9822(98)70320-3
Publisher site
See Article on Publisher Site

Abstract

Background: Developmental dyslexia is a specific disorder of reading and spelling that affects 3–9% of school-age children and adults. Contrary to the view that it results solely from deficits in processes specific to linguistic analysis, current research has shown that deficits in more basic auditory or visual skills may contribute to the reading difficulties of dyslexic individuals. These might also have a crucial role in the development of normal reading skills. Evidence for visual deficits in dyslexia is usually found only with dynamic and not static stimuli, implicating the magnocellular pathway or dorsal visual stream as the cellular locus responsible. Studies of such a dissociation between the processing of dynamic and static auditory stimuli have not been reported previously. Results: We show that dyslexic individuals are less sensitive both to particular rates of auditory frequency modulation (2 Hz and 40 Hz but not 240 Hz) and to dynamic visual-motion stimuli. There were high correlations, for both dyslexic and normal readers, between their sensitivity to the dynamic auditory and visual stimuli. Nonword reading, a measure of phonological awareness believed crucial to reading development, was also found to be related to these sensory measures. Conclusions: These results further implicate neuronal mechanisms that are specialised for detecting stimulus timing and change as being dysfunctional in many dyslexic individuals. The dissociation observed in the performance of dyslexic individuals on different auditory tasks suggests a sub-modality division similar to that already described in the visual system. These dynamic tests may provide a non-linguistic means of identifying children at risk of reading failure.

Journal

Current BiologyElsevier

Published: Jul 2, 1998

References

  • The concept of specific reading retardation
    Rutter, M; Yule, W
  • Visual and visuomotor performance in dyslexic children
    Felmingham, K; Jakobsen, L
  • Magnocellular function and children's single word reading
    Cornelissen, P; Hansen, P; Hutton, J; Evangelinou, V; Stein, J
  • Visual sensitivity and parallel retinocortical channels
    Shapley, R
  • How parallel are the primate visual pathways?
    Merigan, W; Maunsell, J

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off