Semibatch RAFT copolymerization of acrylonitrile and N-isopropylacrylamide: Effect of comonomer distribution on cyclization and thermal stability

Semibatch RAFT copolymerization of acrylonitrile and N-isopropylacrylamide: Effect of comonomer... Utilizing reversible addition-fragmentation chain transfer (RAFT) polymerization, the composition profile of PAN-based copolymers becomes a tunable parameter in preparing carbon fiber precursors. In this work, poly(acrylonitrile-co-N-isopropylacrylamide) copolymers were prepared via a semibatch process mediated by 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT). The monomer reactivity ratios were determined by the Fineman-Ross (FR), Kelen-Tüdos (KT), and non-linear least squares (NLLS) models. The number average sequence length of acrylonitrile (AN) was found to be highly dependent on the content of N-isopropylacrylamide (NIPAM). NIPAM was introduced at controlled rates into a reaction vessel in attempt to facilitate its distribution in the polymer backbone. These semibatch copolymers were evaluated based on their ring-closing cyclization efficiency, which was characterized by differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Significantly, DSC exotherms were reduced and cyclization occurred much faster reaching a greater thermal stability when NIPAM was introduced at slow feed rates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Semibatch RAFT copolymerization of acrylonitrile and N-isopropylacrylamide: Effect of comonomer distribution on cyclization and thermal stability

Loading next page...
 
/lp/elsevier/semibatch-raft-copolymerization-of-acrylonitrile-and-n-iPDKB09xx6
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2015.12.035
Publisher site
See Article on Publisher Site

Abstract

Utilizing reversible addition-fragmentation chain transfer (RAFT) polymerization, the composition profile of PAN-based copolymers becomes a tunable parameter in preparing carbon fiber precursors. In this work, poly(acrylonitrile-co-N-isopropylacrylamide) copolymers were prepared via a semibatch process mediated by 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT). The monomer reactivity ratios were determined by the Fineman-Ross (FR), Kelen-Tüdos (KT), and non-linear least squares (NLLS) models. The number average sequence length of acrylonitrile (AN) was found to be highly dependent on the content of N-isopropylacrylamide (NIPAM). NIPAM was introduced at controlled rates into a reaction vessel in attempt to facilitate its distribution in the polymer backbone. These semibatch copolymers were evaluated based on their ring-closing cyclization efficiency, which was characterized by differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Significantly, DSC exotherms were reduced and cyclization occurred much faster reaching a greater thermal stability when NIPAM was introduced at slow feed rates.

Journal

PolymerElsevier

Published: Feb 10, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off