Self-healing thermal barrier coating systems fabricated by spark plasma sintering

Self-healing thermal barrier coating systems fabricated by spark plasma sintering The present paper focuses on the Spark Plasma Sintering (SPS) manufacturing of a new type of self-healing thermal barrier coating (TBC) and a study of its thermal cycling behaviour. The ceramic coating consists on an Yttria Partially Stabilized Zirconia (YPSZ) matrix into which healing agents made of MoSi2-Al2O3 core-shell particles are dispersed prior to sintering. The protocol used to sinter self-healing TBCs on MCrAlY (M: Ni or NiCo) pre-coated Ni-based superalloys is described and the reaction between the particles and the MCrAlY bond coating as well as the preventive solutions are determined. Thermal cycling experiments are performed on this complete multilayer system to study the crack healing behaviour. Post-mortem observations highlighted local healing of cracks due to the formation of silica and the subsequent conversion to zircon at the rims of the cracks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Self-healing thermal barrier coating systems fabricated by spark plasma sintering

Loading next page...
 
/lp/elsevier/self-healing-thermal-barrier-coating-systems-fabricated-by-spark-Oct0dZZHNf
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2018.02.001
Publisher site
See Article on Publisher Site

Abstract

The present paper focuses on the Spark Plasma Sintering (SPS) manufacturing of a new type of self-healing thermal barrier coating (TBC) and a study of its thermal cycling behaviour. The ceramic coating consists on an Yttria Partially Stabilized Zirconia (YPSZ) matrix into which healing agents made of MoSi2-Al2O3 core-shell particles are dispersed prior to sintering. The protocol used to sinter self-healing TBCs on MCrAlY (M: Ni or NiCo) pre-coated Ni-based superalloys is described and the reaction between the particles and the MCrAlY bond coating as well as the preventive solutions are determined. Thermal cycling experiments are performed on this complete multilayer system to study the crack healing behaviour. Post-mortem observations highlighted local healing of cracks due to the formation of silica and the subsequent conversion to zircon at the rims of the cracks.

Journal

Materials & designElsevier

Published: Apr 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off