Searching for new redox-complexes\in organic flow batteries

Searching for new redox-complexes\in organic flow batteries The study of redox couples based on Fe(III)/(II) and Co(II)/(I) organic complexes has demonstrated chemically reversible redox processes as well as good stability in organic solvents. These active complexes, obtained with polypyridine ligands, present low cost, low toxicity and good chemical stability. Moreover, they demonstrated fast redox kinetics and for that, they are candidate for active species in redox flow cells. A wide library of polypyridine complexes have been prepared and tested as acceptor ligands to reach an open circuit voltage up to 2 V, in a mixture of ethylene carbonate and propylene carbonate (EC/PC) chosen for their low volatility and electrochemical stability. Solubility data are presented after tuning ligand design to optimize metal-complex solubility. The best compounds were [Fe(bpy)3]Tf2 (Tf = CF3SO3−, bpy = 2.2′-bipyridine) and [Co(bpy)3]Tf2 which generated current densities of the order of 30 mA/cm2 in thin layer static cells. These complexes were also preliminary tested in a complete flow cell equipped with a Nafion membrane, with LiTf electrolyte, and ca. 90% coulombic efficiency was observed. The decrease of performance observed after 8 h is under investigation and assigned, for now, to membrane degradation. A change of membrane characteristics should be considered to exploit the full potentiality of these redox mediators. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Solid State Ionics Elsevier

Searching for new redox-complexes\in organic flow batteries

Loading next page...
 
/lp/elsevier/searching-for-new-redox-complexes-in-organic-flow-batteries-amHxrVnslK
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0167-2738
eISSN
1872-7689
D.O.I.
10.1016/j.ssi.2018.01.017
Publisher site
See Article on Publisher Site

Abstract

The study of redox couples based on Fe(III)/(II) and Co(II)/(I) organic complexes has demonstrated chemically reversible redox processes as well as good stability in organic solvents. These active complexes, obtained with polypyridine ligands, present low cost, low toxicity and good chemical stability. Moreover, they demonstrated fast redox kinetics and for that, they are candidate for active species in redox flow cells. A wide library of polypyridine complexes have been prepared and tested as acceptor ligands to reach an open circuit voltage up to 2 V, in a mixture of ethylene carbonate and propylene carbonate (EC/PC) chosen for their low volatility and electrochemical stability. Solubility data are presented after tuning ligand design to optimize metal-complex solubility. The best compounds were [Fe(bpy)3]Tf2 (Tf = CF3SO3−, bpy = 2.2′-bipyridine) and [Co(bpy)3]Tf2 which generated current densities of the order of 30 mA/cm2 in thin layer static cells. These complexes were also preliminary tested in a complete flow cell equipped with a Nafion membrane, with LiTf electrolyte, and ca. 90% coulombic efficiency was observed. The decrease of performance observed after 8 h is under investigation and assigned, for now, to membrane degradation. A change of membrane characteristics should be considered to exploit the full potentiality of these redox mediators.

Journal

Solid State IonicsElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off