Salinity induced effects on the growth rates and mycelia composition of basidiomycete and zygomycete fungi

Salinity induced effects on the growth rates and mycelia composition of basidiomycete and... Soil salinization, as the combination of primary and secondary events, can adversely affect organisms inhabiting this compartment. In the present study, the effects of increased salinity were assessed in four species of terrestrial fungi: Lentinus sajor caju, Phanerochaete chrysosporium, Rhizopus oryzae and Trametes versicolor. The mycelial growth and biochemical composition of the four fungi were determined under three exposure scenarios: 1) exposure to serial dilutions of natural seawater (SW), 2) exposure to serial concentrations of NaCl (potential surrogate of SW); and 3) exposure to serial concentrations of NaCl after a period of pre-exposure to low levels of NaCl. The toxicity of NaCl was slightly higher than that of SW, for all fungi species: the conductivities causing 50% of growth inhibition (EC50) were within 14.9 and 22.0 mScm−1 for NaCl and within 20.2 and 34.1 mScm−1 for SW. Phanerochaete chrysosporium showed to be the less sensitive species, both for NaCl and SW. Exposure to NaCl caused changes in the biochemical composition of fungi, mainly increasing the production of polysaccharides. When fungi were exposed to SW this pattern of biochemical response was not observed. Fungi pre-exposed to low levels of salinity presented higher EC50 than fungi non-pre-exposed, though 95% confidence limits overlapped, with the exception of P. chrysosporium. Pre-exposure to low levels of NaCl also induced changes in the biochemical composition of the mycelia of L. sajor caju and R. oryzae, relatively to the respective control. These results suggest that some terrestrial fungi may acquire an increased tolerance to NaCl after being pre-exposed to low levels of this salt, thus, suggesting their capacity to persist in environments that will undergo salinization. Furthermore, NaCl could be used as a protective surrogate of SW to derive safe salinity levels for soils, since it induced toxicity similar or higher than that of SW. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Salinity induced effects on the growth rates and mycelia composition of basidiomycete and zygomycete fungi

Loading next page...
 
/lp/elsevier/salinity-induced-effects-on-the-growth-rates-and-mycelia-composition-PSB0JwL9X0
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.09.075
Publisher site
See Article on Publisher Site

Abstract

Soil salinization, as the combination of primary and secondary events, can adversely affect organisms inhabiting this compartment. In the present study, the effects of increased salinity were assessed in four species of terrestrial fungi: Lentinus sajor caju, Phanerochaete chrysosporium, Rhizopus oryzae and Trametes versicolor. The mycelial growth and biochemical composition of the four fungi were determined under three exposure scenarios: 1) exposure to serial dilutions of natural seawater (SW), 2) exposure to serial concentrations of NaCl (potential surrogate of SW); and 3) exposure to serial concentrations of NaCl after a period of pre-exposure to low levels of NaCl. The toxicity of NaCl was slightly higher than that of SW, for all fungi species: the conductivities causing 50% of growth inhibition (EC50) were within 14.9 and 22.0 mScm−1 for NaCl and within 20.2 and 34.1 mScm−1 for SW. Phanerochaete chrysosporium showed to be the less sensitive species, both for NaCl and SW. Exposure to NaCl caused changes in the biochemical composition of fungi, mainly increasing the production of polysaccharides. When fungi were exposed to SW this pattern of biochemical response was not observed. Fungi pre-exposed to low levels of salinity presented higher EC50 than fungi non-pre-exposed, though 95% confidence limits overlapped, with the exception of P. chrysosporium. Pre-exposure to low levels of NaCl also induced changes in the biochemical composition of the mycelia of L. sajor caju and R. oryzae, relatively to the respective control. These results suggest that some terrestrial fungi may acquire an increased tolerance to NaCl after being pre-exposed to low levels of this salt, thus, suggesting their capacity to persist in environments that will undergo salinization. Furthermore, NaCl could be used as a protective surrogate of SW to derive safe salinity levels for soils, since it induced toxicity similar or higher than that of SW.

Journal

Environmental PollutionElsevier

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off