Ruthenium dendrimers as carriers for anticancer siRNA

Ruthenium dendrimers as carriers for anticancer siRNA Dendrimers, which are considered as one of the most promising tools in the field of nanobiotechnology due to their structural organization, showed a great potential in gene therapy, drug delivery, medical imaging and as antimicrobial and antiviral agents. This article is devoted to study interactions between new carbosilane-based metallodendrimers containing ruthenium and anti-cancer small interfering RNA (siRNA). Formation of complexes between anti-cancer siRNAs and Ru-based carbosilane dendrimers was evaluated by transmission electron microscopy, circular dichroism and fluorescence. The zeta-potential and the size of dendriplexes were determined by dynamic light scattering. The internalization of dendriplexes were estimated using HL-60 cells. Results show that ruthenium dendrimers associated with anticancer siRNA have the ability to deliver siRNA as non-viral vectors into the cancer cells. Moreover, dendrimers can protect siRNA against nuclease degradation. Nevertheless, further research need to be performed to examine the therapeutic potential of ruthenium dendrimers as well as dendrimers complexed with siRNA and anticancer drugs towards cancer cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Inorganic Biochemistry Elsevier

Loading next page...
 
/lp/elsevier/ruthenium-dendrimers-as-carriers-for-anticancer-sirna-yeKJgBYieZ
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0162-0134
eISSN
1873-3344
D.O.I.
10.1016/j.jinorgbio.2018.01.001
Publisher site
See Article on Publisher Site

Abstract

Dendrimers, which are considered as one of the most promising tools in the field of nanobiotechnology due to their structural organization, showed a great potential in gene therapy, drug delivery, medical imaging and as antimicrobial and antiviral agents. This article is devoted to study interactions between new carbosilane-based metallodendrimers containing ruthenium and anti-cancer small interfering RNA (siRNA). Formation of complexes between anti-cancer siRNAs and Ru-based carbosilane dendrimers was evaluated by transmission electron microscopy, circular dichroism and fluorescence. The zeta-potential and the size of dendriplexes were determined by dynamic light scattering. The internalization of dendriplexes were estimated using HL-60 cells. Results show that ruthenium dendrimers associated with anticancer siRNA have the ability to deliver siRNA as non-viral vectors into the cancer cells. Moreover, dendrimers can protect siRNA against nuclease degradation. Nevertheless, further research need to be performed to examine the therapeutic potential of ruthenium dendrimers as well as dendrimers complexed with siRNA and anticancer drugs towards cancer cells.

Journal

Journal of Inorganic BiochemistryElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial