Runoff generation processes estimated from hydrological observations on a steep forested hillslope with a thin soil layer

Runoff generation processes estimated from hydrological observations on a steep forested... In order to understand runoff generation processes on a forested hillslope involving large heterogeneities, this study monitored runoff from a steep hillslope with a thin soil layer as well as matric potential within it and analyzed their responses to storm rainfall. A comparison of storm runoff responses from the study slope with those from two adjacent catchments, one of which includes it, showed that physical properties of the slope reflected the runoff characteristics: although no responses occurred in very dry conditions because of the absence of wet zones near the stream, the area contributing to storm runoff more rapidly extended to the whole slope due to its topographic properties. They also caused its steep hydrographs produced in the wettest condition where almost all the rainfall contributed to storm runoff. In this wettest condition, tensiometric responses near bedrock showed the vertical quick propagation of the rainfall pulse, and a good agreement of storm hydrograph simulated through a kinematic wave runoff model suggested that runoff from the slope was produced by a lateral flow on the bedrock receiving the quick propagation. In a transition process from dry to the wettest conditions, the development of the lateral flow producing smaller responses at the downslope end was estimated from decreasing of matric potential near bedrock from high negative to low values with increasing cumulative rainfall. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrology Elsevier

Runoff generation processes estimated from hydrological observations on a steep forested hillslope with a thin soil layer

Journal of Hydrology, Volume 200 (1) – Dec 15, 1997

Loading next page...
 
/lp/elsevier/runoff-generation-processes-estimated-from-hydrological-observations-HDUxZPKZHj
Publisher
Elsevier
Copyright
Copyright © 1997 Elsevier Ltd
ISSN
0022-1694
eISSN
1879-2707
DOI
10.1016/S0022-1694(97)00018-8
Publisher site
See Article on Publisher Site

Abstract

In order to understand runoff generation processes on a forested hillslope involving large heterogeneities, this study monitored runoff from a steep hillslope with a thin soil layer as well as matric potential within it and analyzed their responses to storm rainfall. A comparison of storm runoff responses from the study slope with those from two adjacent catchments, one of which includes it, showed that physical properties of the slope reflected the runoff characteristics: although no responses occurred in very dry conditions because of the absence of wet zones near the stream, the area contributing to storm runoff more rapidly extended to the whole slope due to its topographic properties. They also caused its steep hydrographs produced in the wettest condition where almost all the rainfall contributed to storm runoff. In this wettest condition, tensiometric responses near bedrock showed the vertical quick propagation of the rainfall pulse, and a good agreement of storm hydrograph simulated through a kinematic wave runoff model suggested that runoff from the slope was produced by a lateral flow on the bedrock receiving the quick propagation. In a transition process from dry to the wettest conditions, the development of the lateral flow producing smaller responses at the downslope end was estimated from decreasing of matric potential near bedrock from high negative to low values with increasing cumulative rainfall.

Journal

Journal of HydrologyElsevier

Published: Dec 15, 1997

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off