Role of LRRK2 in manganese-induced neuroinflammation and microglial autophagy

Role of LRRK2 in manganese-induced neuroinflammation and microglial autophagy Overexposure to manganese (Mn) leads to manganism and neurotoxicity induced by Mn is the focus of recent research. Microglia play a vital role in Mn-induced neurotoxicity, and our previous studies firstly showed that Mn could stimulate activation of microglia, leading to the neuroinflammation, and inhibition of microglial inflammation effectively attenuated Mn-induced death of dopamine neurons. However, the detailed mechanism of manganese-induced neuroinflammation is still unclear. Leucine rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of many neurodegenerative disorders. Recent studies have indicated that LRRK2, which is highly expressed in microglia, plays a specific role in microglia and autophagy process. In this paper, we try to find the effect of LRRK2 on Mn-triggered neuroinflammation and its possible mechanism in vivo and in vitro. By establishing a Mn exposure animal model, our studies found that Mn exposure could induce dopaminergic neurons damage and activate microglia. Activated microglia triggered neuroinflammation by releasing multiple inflammatory cytokines, and the expression of LRRK2 was upregulated in vivo and in vitro. We also found that Mn exposure induced autophagy dysfunction in vivo and in vitro. Next, we used LRRK2 siRNA and LRRK2-IN-1 to inhibit the expression of LRRK2, and found that inhibition of LRRK2 could not only decrease the expression of inflammatory cytokines, but also recover autophagic function of microglia. Our investigation not only reveals the role of LRRK2 in Mn-induced neuroinflammation but also sheds light on the prevention and protection of manganism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

Role of LRRK2 in manganese-induced neuroinflammation and microglial autophagy

Loading next page...
 
/lp/elsevier/role-of-lrrk2-in-manganese-induced-neuroinflammation-and-microglial-WhmwANyNPh
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2018.02.007
Publisher site
See Article on Publisher Site

Abstract

Overexposure to manganese (Mn) leads to manganism and neurotoxicity induced by Mn is the focus of recent research. Microglia play a vital role in Mn-induced neurotoxicity, and our previous studies firstly showed that Mn could stimulate activation of microglia, leading to the neuroinflammation, and inhibition of microglial inflammation effectively attenuated Mn-induced death of dopamine neurons. However, the detailed mechanism of manganese-induced neuroinflammation is still unclear. Leucine rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of many neurodegenerative disorders. Recent studies have indicated that LRRK2, which is highly expressed in microglia, plays a specific role in microglia and autophagy process. In this paper, we try to find the effect of LRRK2 on Mn-triggered neuroinflammation and its possible mechanism in vivo and in vitro. By establishing a Mn exposure animal model, our studies found that Mn exposure could induce dopaminergic neurons damage and activate microglia. Activated microglia triggered neuroinflammation by releasing multiple inflammatory cytokines, and the expression of LRRK2 was upregulated in vivo and in vitro. We also found that Mn exposure induced autophagy dysfunction in vivo and in vitro. Next, we used LRRK2 siRNA and LRRK2-IN-1 to inhibit the expression of LRRK2, and found that inhibition of LRRK2 could not only decrease the expression of inflammatory cytokines, but also recover autophagic function of microglia. Our investigation not only reveals the role of LRRK2 in Mn-induced neuroinflammation but also sheds light on the prevention and protection of manganism.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Mar 25, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off