Role of different receptors and actin filaments on Salmonella Typhimurium invasion in chicken macrophages

Role of different receptors and actin filaments on Salmonella Typhimurium invasion in chicken... Bacterial attachment to host cell is the first event for pathogen entry. The attachment is mediated through membrane expressed adhesins present on the organism and receptors on the cell surface of host. The objective of this study was to investigate the significance of Fc receptors (FcRs), actin filament polymerization, mannose receptors (MRs), carbohydrate moieties like N-linked glycans and sialic acid on chicken macrophages for invasion of S. Typhimurium. Opsonisation of S. Typhimurium resulted in three folds more invasion in chicken monocyte derived macrophages. Cytochalasin D, an inhibitor of actin filament polymerization prevented uptake of S. Typhimurium. Pre-incubation of macrophages with cytochalasin D, showed severe decrease (28 folds) in S. Typhimurium invasion. Next we attempted to analyse the role of carbohydrate receptors of macrophages in S. Typhimurium invasion. Treatment of macrophages with methyl α-d-mannopyranoside, PNGase F and neuraminidase, showed 2.5, 5 and 2.5 folds decrease in invasion respectively. Our data suggest that deglycosylation of N-linked glycans including sialic acid by PNGase F is more effective in inhibition of S. Typhimurium invasion than neuraminidase which removes only sialic acid. These findings suggested FcRs, actin filament polymerization, MRs, N-linked glycans and sialic acid may act as gateway for entry of S. Typhimurium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Immunobiology Elsevier

Role of different receptors and actin filaments on Salmonella Typhimurium invasion in chicken macrophages

Loading next page...
 
/lp/elsevier/role-of-different-receptors-and-actin-filaments-on-salmonella-5Nvm3Rn3vf
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier GmbH
ISSN
0171-2985
eISSN
1878-3279
D.O.I.
10.1016/j.imbio.2018.01.003
Publisher site
See Article on Publisher Site

Abstract

Bacterial attachment to host cell is the first event for pathogen entry. The attachment is mediated through membrane expressed adhesins present on the organism and receptors on the cell surface of host. The objective of this study was to investigate the significance of Fc receptors (FcRs), actin filament polymerization, mannose receptors (MRs), carbohydrate moieties like N-linked glycans and sialic acid on chicken macrophages for invasion of S. Typhimurium. Opsonisation of S. Typhimurium resulted in three folds more invasion in chicken monocyte derived macrophages. Cytochalasin D, an inhibitor of actin filament polymerization prevented uptake of S. Typhimurium. Pre-incubation of macrophages with cytochalasin D, showed severe decrease (28 folds) in S. Typhimurium invasion. Next we attempted to analyse the role of carbohydrate receptors of macrophages in S. Typhimurium invasion. Treatment of macrophages with methyl α-d-mannopyranoside, PNGase F and neuraminidase, showed 2.5, 5 and 2.5 folds decrease in invasion respectively. Our data suggest that deglycosylation of N-linked glycans including sialic acid by PNGase F is more effective in inhibition of S. Typhimurium invasion than neuraminidase which removes only sialic acid. These findings suggested FcRs, actin filament polymerization, MRs, N-linked glycans and sialic acid may act as gateway for entry of S. Typhimurium.

Journal

ImmunobiologyElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off