Ridge-like lava tube systems in southeast Tharsis, Mars

Ridge-like lava tube systems in southeast Tharsis, Mars Lava tubes are widely distributed in volcanic fields on a planetary surface and they are important means of lava transportation. We have identified 38 sinuous ridges with a lava-tube origin in southeast Tharsis. The lengths vary between ~14 and ~740km, and most of them occur in areas with slopes <0.3°. We analyzed their geomorphology in detail with CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) images and DTM (digital terrain model) derived from them. We identified three cross-sectional shapes of these sinuous ridges: round-crested, double-ridged, and flat-crested and described features associated with the lava tubes, including branches, axial cracks, collapsed pits, breakout lobes, and tube-fed lava deltas. Age determination results showed that most of the lava tubes formed in Late Hesperian and were active until the Hesperian-Amazonian boundary. We proposed that these lava tubes formed at relatively low local flow rate, low lava viscosity, and sustained magma supply during a long period. Besides, lava flow inflation is also important in the formation of the ridge-like lava tubes and some associated features. These lava tubes provide efficient lateral pathways for magma transportation over the relatively low topographic slopes in southeast Tharsis, and they are important for the formation of long lava flows in this region. The findings of this study provide an alternative formation mechanism for sinuous ridges on the martian surface. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geomorphology Elsevier

Ridge-like lava tube systems in southeast Tharsis, Mars

Loading next page...
 
/lp/elsevier/ridge-like-lava-tube-systems-in-southeast-tharsis-mars-dIf4gyHUay
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0169-555X
eISSN
1872-695X
D.O.I.
10.1016/j.geomorph.2017.08.023
Publisher site
See Article on Publisher Site

Abstract

Lava tubes are widely distributed in volcanic fields on a planetary surface and they are important means of lava transportation. We have identified 38 sinuous ridges with a lava-tube origin in southeast Tharsis. The lengths vary between ~14 and ~740km, and most of them occur in areas with slopes <0.3°. We analyzed their geomorphology in detail with CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) images and DTM (digital terrain model) derived from them. We identified three cross-sectional shapes of these sinuous ridges: round-crested, double-ridged, and flat-crested and described features associated with the lava tubes, including branches, axial cracks, collapsed pits, breakout lobes, and tube-fed lava deltas. Age determination results showed that most of the lava tubes formed in Late Hesperian and were active until the Hesperian-Amazonian boundary. We proposed that these lava tubes formed at relatively low local flow rate, low lava viscosity, and sustained magma supply during a long period. Besides, lava flow inflation is also important in the formation of the ridge-like lava tubes and some associated features. These lava tubes provide efficient lateral pathways for magma transportation over the relatively low topographic slopes in southeast Tharsis, and they are important for the formation of long lava flows in this region. The findings of this study provide an alternative formation mechanism for sinuous ridges on the martian surface.

Journal

GeomorphologyElsevier

Published: Oct 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off