Rheology of the cellulose nanocrystals filled poly(ε-caprolactone) biocomposites

Rheology of the cellulose nanocrystals filled poly(ε-caprolactone) biocomposites The pristine and acetylated cellulose nanocrystal (CNC) particles were incorporated with poly(ε-caprolactone) to prepare two kinds of green nanocomposite systems: the former is incompatible, while the latter compatible thermodynamically. A rheological study was then performed systematically with various flow fields, including linear and nonlinear dynamic shear flow, creep and start-up flow. Some interesting results were shown then. The pristine CNC filled system shows far lower percolation threshold than the acetylated CNC filled one because the improved phase affinity yields diluent effect. The formation and rebuild-up of percolated network is driven by the Brownian motion of particles, which are nearly independent of altered phase affinity. However, the improved phase affinity makes the system more sensitive to the strain-responded deformation, leading to the reinforced Maxwell spring unit during creep and to a weak strain overshoot during dynamic flow. The structural evolution and relaxations of two systems were further evaluated from different perspectives. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Rheology of the cellulose nanocrystals filled poly(ε-caprolactone) biocomposites

Loading next page...
 
/lp/elsevier/rheology-of-the-cellulose-nanocrystals-filled-poly-caprolactone-Rc8pg7ewda
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2018.02.050
Publisher site
See Article on Publisher Site

Abstract

The pristine and acetylated cellulose nanocrystal (CNC) particles were incorporated with poly(ε-caprolactone) to prepare two kinds of green nanocomposite systems: the former is incompatible, while the latter compatible thermodynamically. A rheological study was then performed systematically with various flow fields, including linear and nonlinear dynamic shear flow, creep and start-up flow. Some interesting results were shown then. The pristine CNC filled system shows far lower percolation threshold than the acetylated CNC filled one because the improved phase affinity yields diluent effect. The formation and rebuild-up of percolated network is driven by the Brownian motion of particles, which are nearly independent of altered phase affinity. However, the improved phase affinity makes the system more sensitive to the strain-responded deformation, leading to the reinforced Maxwell spring unit during creep and to a weak strain overshoot during dynamic flow. The structural evolution and relaxations of two systems were further evaluated from different perspectives.

Journal

PolymerElsevier

Published: Mar 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off