Rheological behaviour of ultra-high performance cementitious composites containing high amounts of silica fume

Rheological behaviour of ultra-high performance cementitious composites containing high amounts... This study investigates the rheological behaviour of ultra-high performance cementitious composite mortars containing 15–25 % of silica fume. The utilization of two Portland cements with different mineralogical compositions and their influence on yield stress of mortar was monitored. The coaxial rheometer was used for determination of flow curves of tested samples. It was found that besides the relation between flow and water-to-binder ratio, there is also a substantial relationship with the mortar composition, in particular with the content of silica fume. The yield stress can be described by an exponential function of volume content of solids in the mortar. Such a function can describe not only the influence of granulometry but also the impact of structure formation on early age Portland cement hydration. It was found that the estimation of yield stress can be done even by a simple modular in-field technique such as a spread flow test. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cement and Concrete Composites Elsevier

Rheological behaviour of ultra-high performance cementitious composites containing high amounts of silica fume

Loading next page...
 
/lp/elsevier/rheological-behaviour-of-ultra-high-performance-cementitious-vkbw3qmlAr
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0958-9465
D.O.I.
10.1016/j.cemconcomp.2018.01.009
Publisher site
See Article on Publisher Site

Abstract

This study investigates the rheological behaviour of ultra-high performance cementitious composite mortars containing 15–25 % of silica fume. The utilization of two Portland cements with different mineralogical compositions and their influence on yield stress of mortar was monitored. The coaxial rheometer was used for determination of flow curves of tested samples. It was found that besides the relation between flow and water-to-binder ratio, there is also a substantial relationship with the mortar composition, in particular with the content of silica fume. The yield stress can be described by an exponential function of volume content of solids in the mortar. Such a function can describe not only the influence of granulometry but also the impact of structure formation on early age Portland cement hydration. It was found that the estimation of yield stress can be done even by a simple modular in-field technique such as a spread flow test.

Journal

Cement and Concrete CompositesElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial