Rheological and structural characteristics of whey protein-pectin complex coacervates

Rheological and structural characteristics of whey protein-pectin complex coacervates Complex coacervation of protein/polysaccharide has found much interest for the encapsulation of bioactive materials. The rheological properties of the coacervates of whey protein/high methoxyl pectin (WPI/HMP) at different pH including 3.0, 3.5 and 4.0 were investigated. The complex viscosity (η*) of the coacervate was decreased linearly with frequency, showing the shear-thinning phenomenon of the coacervates. Furthermore, the highest complex modulus (G*) and more compact coacervate were obtained at pH 3.5, revealing less deformability and flow behaviour. All the coacervates showed higher storage modulus (G′) than loss modulus (G″) indicating the formation of highly interconnected gel-like structure. The maximum fracture stress was obtained at pH 3.5 revealing the highest intermolecular interactions between WPI and HMP. It seems the high fracture stress and gel strength of the complex coacervate would be suitable for encapsulation of bioactives. The high aggregation was also achieved at pH 3.5, as the lower charge density of HMP should make it more readily neutralized by whey protein binding. FTIR results showed the spectrum of the coacervate was different from each individual biopolymer, related to their compatibility and intermolecular interactions between the functional groups of HMP and WPI. Although, to get more insight toward dynamic rheological measurements in surveying the interaction of any biopolymer blends, further work should be carried out for other biopolymers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Engineering Elsevier

Rheological and structural characteristics of whey protein-pectin complex coacervates

Loading next page...
 
/lp/elsevier/rheological-and-structural-characteristics-of-whey-protein-pectin-iZqnvAutnw
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0260-8774
D.O.I.
10.1016/j.jfoodeng.2018.02.007
Publisher site
See Article on Publisher Site

Abstract

Complex coacervation of protein/polysaccharide has found much interest for the encapsulation of bioactive materials. The rheological properties of the coacervates of whey protein/high methoxyl pectin (WPI/HMP) at different pH including 3.0, 3.5 and 4.0 were investigated. The complex viscosity (η*) of the coacervate was decreased linearly with frequency, showing the shear-thinning phenomenon of the coacervates. Furthermore, the highest complex modulus (G*) and more compact coacervate were obtained at pH 3.5, revealing less deformability and flow behaviour. All the coacervates showed higher storage modulus (G′) than loss modulus (G″) indicating the formation of highly interconnected gel-like structure. The maximum fracture stress was obtained at pH 3.5 revealing the highest intermolecular interactions between WPI and HMP. It seems the high fracture stress and gel strength of the complex coacervate would be suitable for encapsulation of bioactives. The high aggregation was also achieved at pH 3.5, as the lower charge density of HMP should make it more readily neutralized by whey protein binding. FTIR results showed the spectrum of the coacervate was different from each individual biopolymer, related to their compatibility and intermolecular interactions between the functional groups of HMP and WPI. Although, to get more insight toward dynamic rheological measurements in surveying the interaction of any biopolymer blends, further work should be carried out for other biopolymers.

Journal

Journal of Food EngineeringElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial