Revisiting the open-framework zinc hexacyanoferrate: The role of ternary electrolyte and sodium-ion intercalation mechanism

Revisiting the open-framework zinc hexacyanoferrate: The role of ternary electrolyte and... Non-flammable rechargeable aqueous sodium-ion batteries (RASB) made from natural abundant resources offer promising opportunities in large-scale energy storage, yet the low energy density as well as low voltage output and the limited cycle life hinder their practical applications. Here, we develop a high-voltage RASB based on rhombohedral zinc hexacyanoferrate as cathode materials, carbon-coated NaTi2(PO4)3 as anode materials and ternary NaClO4-H2O-polyethylene glycol (Na-H2O-PEG) as electrolyte to overcome these drawbacks. Such an RASB can deliver a high voltage output of 1.6 V with a specific energy density of 59 Wh kg−1 based on the total mass of active electrode materials. In addition, it possesses an excellent rate capability as an ultra-capacitor (2.7 kW kg−1). The capacity retention more than 91% is obtained after 100 cycles. Finally, a reversible phase transformation between rhombohedral Zn3[Fe(CN)6]2 and rhombohedral Na2Zn3[Fe(CN)6]2 that are accompanied by the insertion/extraction of sodium ion in zinc hexacyanoferrate is unveiled. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Revisiting the open-framework zinc hexacyanoferrate: The role of ternary electrolyte and sodium-ion intercalation mechanism

Loading next page...
 
/lp/elsevier/revisiting-the-open-framework-zinc-hexacyanoferrate-the-role-of-ZoJd80PK1U
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2018.01.083
Publisher site
See Article on Publisher Site

Abstract

Non-flammable rechargeable aqueous sodium-ion batteries (RASB) made from natural abundant resources offer promising opportunities in large-scale energy storage, yet the low energy density as well as low voltage output and the limited cycle life hinder their practical applications. Here, we develop a high-voltage RASB based on rhombohedral zinc hexacyanoferrate as cathode materials, carbon-coated NaTi2(PO4)3 as anode materials and ternary NaClO4-H2O-polyethylene glycol (Na-H2O-PEG) as electrolyte to overcome these drawbacks. Such an RASB can deliver a high voltage output of 1.6 V with a specific energy density of 59 Wh kg−1 based on the total mass of active electrode materials. In addition, it possesses an excellent rate capability as an ultra-capacitor (2.7 kW kg−1). The capacity retention more than 91% is obtained after 100 cycles. Finally, a reversible phase transformation between rhombohedral Zn3[Fe(CN)6]2 and rhombohedral Na2Zn3[Fe(CN)6]2 that are accompanied by the insertion/extraction of sodium ion in zinc hexacyanoferrate is unveiled.

Journal

Journal of Power SourcesElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off