Review of restraint frost method on cold surface

Review of restraint frost method on cold surface Many researchers have focused on the investigation into frost formation mechanism and tried to find various effective defrosting methods in recent years. Study on frost is divided into three stages: the frost formation process and mechanism, defrosting methods, and restraint frost methods. The three stages are carried out sequentially or in parallel. Compared to defrost, restraint frost is becoming more welcomed by peoples because of no energy or smaller consume. The affecting factors on frosting directly induce frost formation on cold surface, which leads to blockage, performance decrease, and even malfunction of the low temperature heat exchanger. This paper divides the factors into three categories: the characteristics (temperature, humidity and velocity) of the moist air, the features (temperature, structure and position, treatment)of the cold surfaces, the interaction between the air or the formed frost and the cold surface (electric field, ultrasonic wave, magnetic field, oscillation effects). One or several of the factors must be changed in order to restrain frost formation. Relative humidity is considered as that it has a larger effect on the frost formation, compared to the air temperature and air velocity. However, only a few researches pay attention to the restraint frost by controlling the characteristics of moist air. The structural parameters such as the fin spaces have the most important effect on the heat transfer performance of a heat exchanger under frosting conditions. Therefore, an optimization of the heat exchanger design should be considered for restraint frost. Hydrophobic surface is recognized as an effective way to improve the energy efficiency of a refrigeration system under frosting conditions. However, the research results are not as satisfactory as expected because of the difficult fabrication of scalable hydrophobic properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

Review of restraint frost method on cold surface

Loading next page...
 
/lp/elsevier/review-of-restraint-frost-method-on-cold-surface-ae4c00HvZ3
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.05.088
Publisher site
See Article on Publisher Site

Abstract

Many researchers have focused on the investigation into frost formation mechanism and tried to find various effective defrosting methods in recent years. Study on frost is divided into three stages: the frost formation process and mechanism, defrosting methods, and restraint frost methods. The three stages are carried out sequentially or in parallel. Compared to defrost, restraint frost is becoming more welcomed by peoples because of no energy or smaller consume. The affecting factors on frosting directly induce frost formation on cold surface, which leads to blockage, performance decrease, and even malfunction of the low temperature heat exchanger. This paper divides the factors into three categories: the characteristics (temperature, humidity and velocity) of the moist air, the features (temperature, structure and position, treatment)of the cold surfaces, the interaction between the air or the formed frost and the cold surface (electric field, ultrasonic wave, magnetic field, oscillation effects). One or several of the factors must be changed in order to restrain frost formation. Relative humidity is considered as that it has a larger effect on the frost formation, compared to the air temperature and air velocity. However, only a few researches pay attention to the restraint frost by controlling the characteristics of moist air. The structural parameters such as the fin spaces have the most important effect on the heat transfer performance of a heat exchanger under frosting conditions. Therefore, an optimization of the heat exchanger design should be considered for restraint frost. Hydrophobic surface is recognized as an effective way to improve the energy efficiency of a refrigeration system under frosting conditions. However, the research results are not as satisfactory as expected because of the difficult fabrication of scalable hydrophobic properties.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off