Review and comparison of methods to study the contribution of variables in artificial neural network models

Review and comparison of methods to study the contribution of variables in artificial neural... Convinced by the predictive quality of artificial neural network (ANN) models in ecology, we have turned our interests to their explanatory capacities. Seven methods which can give the relative contribution and/or the contribution profile of the input factors were compared: (i) the ‘PaD’ (for Partial Derivatives) method consists in a calculation of the partial derivatives of the output according to the input variables; (ii) the ‘Weights’ method is a computation using the connection weights; (iii) the ‘Perturb’ method corresponds to a perturbation of the input variables; (iv) the ‘Profile’ method is a successive variation of one input variable while the others are kept constant at a fixed value; (v) the ‘classical stepwise’ method is an observation of the change in the error value when an adding (forward) or an elimination (backward) step of the input variables is operated; (vi) ‘Improved stepwise a’ uses the same principle as the classical stepwise, but the elimination of the input occurs when the network is trained, the connection weights corresponding to the input variable studied is also eliminated; (vii) ‘Improved stepwise b’ involves the network being trained and fixed step by step, one input variable at its mean value to note the consequences on the error. The data tested in this study concerns the prediction of the density of brown trout spawning redds using habitat characteristics. The PaD method was found to be the most useful as it gave the most complete results, followed by the Profile method that gave the contribution profile of the input variables. The Perturb method allowed a good classification of the input parameters as well as the Weights method that has been simplified but these two methods lack stability. Next came the two improved stepwise methods (a and b) that both gave exactly the same result but the contributions were not sufficiently expressed. Finally, the classical stepwise methods gave the poorest results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Modelling Elsevier

Review and comparison of methods to study the contribution of variables in artificial neural network models

Loading next page...
 
/lp/elsevier/review-and-comparison-of-methods-to-study-the-contribution-of-dYsJQ4nwrv
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Ltd
ISSN
0304-3800
eISSN
1872-7026
D.O.I.
10.1016/S0304-3800(02)00257-0
Publisher site
See Article on Publisher Site

Abstract

Convinced by the predictive quality of artificial neural network (ANN) models in ecology, we have turned our interests to their explanatory capacities. Seven methods which can give the relative contribution and/or the contribution profile of the input factors were compared: (i) the ‘PaD’ (for Partial Derivatives) method consists in a calculation of the partial derivatives of the output according to the input variables; (ii) the ‘Weights’ method is a computation using the connection weights; (iii) the ‘Perturb’ method corresponds to a perturbation of the input variables; (iv) the ‘Profile’ method is a successive variation of one input variable while the others are kept constant at a fixed value; (v) the ‘classical stepwise’ method is an observation of the change in the error value when an adding (forward) or an elimination (backward) step of the input variables is operated; (vi) ‘Improved stepwise a’ uses the same principle as the classical stepwise, but the elimination of the input occurs when the network is trained, the connection weights corresponding to the input variable studied is also eliminated; (vii) ‘Improved stepwise b’ involves the network being trained and fixed step by step, one input variable at its mean value to note the consequences on the error. The data tested in this study concerns the prediction of the density of brown trout spawning redds using habitat characteristics. The PaD method was found to be the most useful as it gave the most complete results, followed by the Profile method that gave the contribution profile of the input variables. The Perturb method allowed a good classification of the input parameters as well as the Weights method that has been simplified but these two methods lack stability. Next came the two improved stepwise methods (a and b) that both gave exactly the same result but the contributions were not sufficiently expressed. Finally, the classical stepwise methods gave the poorest results.

Journal

Ecological ModellingElsevier

Published: Feb 15, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off