Retinoic acid promotes stem cell differentiation and embryonic development by transcriptionally activating CFTR

Retinoic acid promotes stem cell differentiation and embryonic development by transcriptionally... Retinoic acid (RA) plays a pivotal role in many cellular processes; however, the signaling mechanisms mediating the effect of RA are not fully understood. Here, we show that RA transcriptionally upregulates cystic fibrosis transmembrane conductance regulator (Cftr) by promoting the direct binding of its receptor RARα to Cftr promoter in mouse spermatogonia and embryonic stem (ES) cells. The RA/CFTR pathway is involved in the differentiation of spermatogonia and organogenesis during the embryo development of Xenopus laevis. Loss of CFTR by siRNA-mediated knockdown blunts the RA-induced spermatogonial differentiation. Overexpression of CFTR mimics the effect of RA on the induction of spermatogonial differentiation or restores the developmental defects induced by the knockdown of RARα in spermatogonial cells and Xenopus laevis. Analysis of the human database shows that the expression of CFTR positively correlates with RARα in brain tissues, stem cells as well as cancers, supporting the role of RA/CFTR pathway in various developmental processes in humans. Together, our study discovers an essential role of CFTR in mediating the RA-dependent signaling for stem cell differentiation and embryonic development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta (BBA) - Molecular Cell Research Elsevier

Retinoic acid promotes stem cell differentiation and embryonic development by transcriptionally activating CFTR

Loading next page...
 
/lp/elsevier/retinoic-acid-promotes-stem-cell-differentiation-and-embryonic-yFAQaBuk37
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0167-4889
D.O.I.
10.1016/j.bbamcr.2018.01.005
Publisher site
See Article on Publisher Site

Abstract

Retinoic acid (RA) plays a pivotal role in many cellular processes; however, the signaling mechanisms mediating the effect of RA are not fully understood. Here, we show that RA transcriptionally upregulates cystic fibrosis transmembrane conductance regulator (Cftr) by promoting the direct binding of its receptor RARα to Cftr promoter in mouse spermatogonia and embryonic stem (ES) cells. The RA/CFTR pathway is involved in the differentiation of spermatogonia and organogenesis during the embryo development of Xenopus laevis. Loss of CFTR by siRNA-mediated knockdown blunts the RA-induced spermatogonial differentiation. Overexpression of CFTR mimics the effect of RA on the induction of spermatogonial differentiation or restores the developmental defects induced by the knockdown of RARα in spermatogonial cells and Xenopus laevis. Analysis of the human database shows that the expression of CFTR positively correlates with RARα in brain tissues, stem cells as well as cancers, supporting the role of RA/CFTR pathway in various developmental processes in humans. Together, our study discovers an essential role of CFTR in mediating the RA-dependent signaling for stem cell differentiation and embryonic development.

Journal

Biochimica et Biophysica Acta (BBA) - Molecular Cell ResearchElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off