Retinoic Acid Induces Stage-Specific Repatterning of the Rostral Central Nervous System

Retinoic Acid Induces Stage-Specific Repatterning of the Rostral Central Nervous System We had previously reported that in gastrulating mouse embryos retinoic acid (RA) induces morphological as well molecular alterations strictly depending on the time of administration. In particular, embryos treated with RA at the mid–late streak stage share reduction of the rostral central nervous system (CNS) and increase of the hindbrain. In the same embryos, loss of the forebrain-expressed genes, such as Emx1, Emx2, and Dlx1, and rostral ectopic expression of the Hoxb-1 gene suggest an antero-posterior (A/P) ordered repatterning of the fore-, mid-, and hindbrain regions. Several genes, such as Pax-2, Wnt-1, En-2, and En-1, are involved in the establishment of midbrain and rostral hindbrain regional identities and boundaries. We report that these genes become coordinately anteriorized only in embryos treated with RA at the late streak stage. Moreover, in the hindbrain of the same embryos, at 8.5 days post coitum (dpc), Wnt-1 and Pax-2 are rostrally induced all along the neural plate. Considering that forebrain markers are repressed in embryos treated with RA at the same time, these findings strongly support the idea that RA administration at the late streak stage induces an ordered repatterning of the rostral CNS, possibly altering the A/P nature of mesendodermal inductive signals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Developmental Biology Elsevier

Retinoic Acid Induces Stage-Specific Repatterning of the Rostral Central Nervous System

Loading next page...
 
/lp/elsevier/retinoic-acid-induces-stage-specific-repatterning-of-the-rostral-ZzSYUdhz2i
Publisher
Elsevier
Copyright
Copyright © 1996 Academic Press
ISSN
0012-1606
eISSN
1095-564X
DOI
10.1006/dbio.1996.0120
pmid
8626038
Publisher site
See Article on Publisher Site

Abstract

We had previously reported that in gastrulating mouse embryos retinoic acid (RA) induces morphological as well molecular alterations strictly depending on the time of administration. In particular, embryos treated with RA at the mid–late streak stage share reduction of the rostral central nervous system (CNS) and increase of the hindbrain. In the same embryos, loss of the forebrain-expressed genes, such as Emx1, Emx2, and Dlx1, and rostral ectopic expression of the Hoxb-1 gene suggest an antero-posterior (A/P) ordered repatterning of the fore-, mid-, and hindbrain regions. Several genes, such as Pax-2, Wnt-1, En-2, and En-1, are involved in the establishment of midbrain and rostral hindbrain regional identities and boundaries. We report that these genes become coordinately anteriorized only in embryos treated with RA at the late streak stage. Moreover, in the hindbrain of the same embryos, at 8.5 days post coitum (dpc), Wnt-1 and Pax-2 are rostrally induced all along the neural plate. Considering that forebrain markers are repressed in embryos treated with RA at the same time, these findings strongly support the idea that RA administration at the late streak stage induces an ordered repatterning of the rostral CNS, possibly altering the A/P nature of mesendodermal inductive signals.

Journal

Developmental BiologyElsevier

Published: May 1, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off