Resistance-curves and wood variability: Application of glued-in-rod

Resistance-curves and wood variability: Application of glued-in-rod The current study investigates the withdrawal strength of glued-in rods as part of linear elastic fracture mechanics. An experimental campaign was performed in order to observe the effect of the specie (spruce and oak) on the axial strength of glued-in rods for given geometrical configurations. Finite elements modelling was presented in order to consider the progressive damage and the crack propagation located at the wood-adhesive interface (failures obtained during experiments). The approach aims at separating the progressive failure due to mode I and mode II. For this, Resistance-Curves, regarded as material properties, were used to characterize the peeling and the shear effects at the ultimate state. The study reveals that the mode I initiates the damage in the glued interface. Using several finite element runs, the predicted pull-out strengths were estimated from the elastic properties of substrates (wood, adhesive and steel) and the fracture properties of wood. Numerical results show the dependence of the strength according to the stiffness of the materials. Moreover, the scattering of the results is also affected by the variability of the fracture energies of the wooden substrates. The investigation leads to propose a robust approach which is able to predict the axial strength of glued-in-rods, considering the variability of each material and combining damage and crack propagation of the wooden substrate. It reveals that the prediction of the ultimate load cannot be performed considering only the failure mode II. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Adhesion and Adhesives Elsevier

Resistance-curves and wood variability: Application of glued-in-rod

Loading next page...
 
/lp/elsevier/resistance-curves-and-wood-variability-application-of-glued-in-rod-gwaqFqXYge
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0143-7496
D.O.I.
10.1016/j.ijadhadh.2016.04.015
Publisher site
See Article on Publisher Site

Abstract

The current study investigates the withdrawal strength of glued-in rods as part of linear elastic fracture mechanics. An experimental campaign was performed in order to observe the effect of the specie (spruce and oak) on the axial strength of glued-in rods for given geometrical configurations. Finite elements modelling was presented in order to consider the progressive damage and the crack propagation located at the wood-adhesive interface (failures obtained during experiments). The approach aims at separating the progressive failure due to mode I and mode II. For this, Resistance-Curves, regarded as material properties, were used to characterize the peeling and the shear effects at the ultimate state. The study reveals that the mode I initiates the damage in the glued interface. Using several finite element runs, the predicted pull-out strengths were estimated from the elastic properties of substrates (wood, adhesive and steel) and the fracture properties of wood. Numerical results show the dependence of the strength according to the stiffness of the materials. Moreover, the scattering of the results is also affected by the variability of the fracture energies of the wooden substrates. The investigation leads to propose a robust approach which is able to predict the axial strength of glued-in-rods, considering the variability of each material and combining damage and crack propagation of the wooden substrate. It reveals that the prediction of the ultimate load cannot be performed considering only the failure mode II.

Journal

International Journal of Adhesion and AdhesivesElsevier

Published: Oct 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off