Residual stresses and fatigue performance

Residual stresses and fatigue performance Residual stresses are an inescapable consequence of manufacturing and fabrication processes, with magnitudes that are often a high proportion of the yield or proof strength. Despite this, their incorporation into life prediction is primarily handled through sweeping assumptions or conservative application of statistics. This can lead to highly conservative fatigue design methodologies or unforeseen failures under dynamic loading. The pull from the desire for higher levels of materials performance, coupled with the push of more sophisticated techniques for residual stress measurement, favours a reassessment of the accuracy of assumptions made about residual stresses and their modification during fatigue cycling. A viewpoint is also emerging that the fatigue performance of welded joints might be optimised through careful process control, coupled with understanding of the relative positions of, and interaction between, residual stress peaks, weld defects, hardness and microstructure. This paper will present information regarding the residual stress profiles in aluminium and steel welds, and in shot peened aluminium, obtained via synchrotron and neutron diffraction at the ESRF-ILL in Grenoble. Certain specimens were then subjected to specific cases of fatigue loading and the residual stress field was again measured. Difficulties associated with determining the strain-free lattice spacing will be mentioned, and the potential import of these data for life prediction modelling will be considered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Failure Analysis Elsevier

Loading next page...
 
/lp/elsevier/residual-stresses-and-fatigue-performance-x0iXI9hyix
Publisher
Elsevier
Copyright
Copyright © 2006 Elsevier Ltd
ISSN
1350-6307
eISSN
1873-1961
DOI
10.1016/j.engfailanal.2006.02.011
Publisher site
See Article on Publisher Site

Abstract

Residual stresses are an inescapable consequence of manufacturing and fabrication processes, with magnitudes that are often a high proportion of the yield or proof strength. Despite this, their incorporation into life prediction is primarily handled through sweeping assumptions or conservative application of statistics. This can lead to highly conservative fatigue design methodologies or unforeseen failures under dynamic loading. The pull from the desire for higher levels of materials performance, coupled with the push of more sophisticated techniques for residual stress measurement, favours a reassessment of the accuracy of assumptions made about residual stresses and their modification during fatigue cycling. A viewpoint is also emerging that the fatigue performance of welded joints might be optimised through careful process control, coupled with understanding of the relative positions of, and interaction between, residual stress peaks, weld defects, hardness and microstructure. This paper will present information regarding the residual stress profiles in aluminium and steel welds, and in shot peened aluminium, obtained via synchrotron and neutron diffraction at the ESRF-ILL in Grenoble. Certain specimens were then subjected to specific cases of fatigue loading and the residual stress field was again measured. Difficulties associated with determining the strain-free lattice spacing will be mentioned, and the potential import of these data for life prediction modelling will be considered.

Journal

Engineering Failure AnalysisElsevier

Published: Mar 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off