Renewable microgrid projects for autonomous small-scale electrification in Andean countries

Renewable microgrid projects for autonomous small-scale electrification in Andean countries Nowadays, 84% of the world population without access to electricity is located in rural areas of developing countries. In particular, in the Andean countries, about 10.4 million people lack of access to electricity, mainly in isolated poor regions. Considering the relevance of electricity in overcoming poverty and promoting socioeconomic development, local-regional-national governments, supported by international organizations, are making efforts to achieve full rural electrification. In this regard, renewable microgrid projects are an effective alternative where the national grid extension has limitations. The literature on the design of such projects is significant. However, when evaluating experiences, most works focus on an analysis of projects’ performance from a technical and/or economical point of view. In contrast, very few literature has been reported on the comparison of such experiences from the perspective of the design process itself and how decisions are taken by project developers. In this article, five rural electrification experiences in Andean Countries (Bolivia, Ecuador, Peru and Venezuela) are reviewed, analyzing the decisions taken across the design process and showing the suitability of these technologies to extend access to electricity. In the target projects, first, a preliminary analysis is carried out to estimate the energy resources and demand. Next, the system is designed and implemented to meet the demand using the available resources. The five projects illustrate different options for the electrical generation (single, hybrid or combination of technologies), storage (battery or diesel backup) and distribution (microgrid or individual systems), as well as different methods for data gathering and systems design. In addition, a comparison of projects’ real behavior is carried out and their technical performance in terms of energy production and suitability of the technologies implemented is analyzed. These projects can be a good reference for the dissemination of such technologies in future projects in the Andean countries and abroad. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

Renewable microgrid projects for autonomous small-scale electrification in Andean countries

Loading next page...
 
/lp/elsevier/renewable-microgrid-projects-for-autonomous-small-scale-YEBzLxFt07
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.05.203
Publisher site
See Article on Publisher Site

Abstract

Nowadays, 84% of the world population without access to electricity is located in rural areas of developing countries. In particular, in the Andean countries, about 10.4 million people lack of access to electricity, mainly in isolated poor regions. Considering the relevance of electricity in overcoming poverty and promoting socioeconomic development, local-regional-national governments, supported by international organizations, are making efforts to achieve full rural electrification. In this regard, renewable microgrid projects are an effective alternative where the national grid extension has limitations. The literature on the design of such projects is significant. However, when evaluating experiences, most works focus on an analysis of projects’ performance from a technical and/or economical point of view. In contrast, very few literature has been reported on the comparison of such experiences from the perspective of the design process itself and how decisions are taken by project developers. In this article, five rural electrification experiences in Andean Countries (Bolivia, Ecuador, Peru and Venezuela) are reviewed, analyzing the decisions taken across the design process and showing the suitability of these technologies to extend access to electricity. In the target projects, first, a preliminary analysis is carried out to estimate the energy resources and demand. Next, the system is designed and implemented to meet the demand using the available resources. The five projects illustrate different options for the electrical generation (single, hybrid or combination of technologies), storage (battery or diesel backup) and distribution (microgrid or individual systems), as well as different methods for data gathering and systems design. In addition, a comparison of projects’ real behavior is carried out and their technical performance in terms of energy production and suitability of the technologies implemented is analyzed. These projects can be a good reference for the dissemination of such technologies in future projects in the Andean countries and abroad.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off