Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations

Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic... Biochar is an emerging low-cost sorbent used for removing trace metals from water. In this study, we evaluated the removal potential of aqueous hexavalent chromium (Cr(VI)) by biochars produced from soybean (Glycine max L.) and burcucumber (Sicyos angulatus L.) residues. The highest Cr(VI) removal from solution occurred at low pH values (pH2–5), and adsorption decreased approximately tenfold when the pH increased from 2 to 10. Synchrotron-based X-ray absorption spectroscopy (XAS) investigations showed that Cr(VI) species were reduced to trivalent chromium (Cr(III)) at the biochar surface following Cr(VI) adsorption. Linear combination fitting (LCF) of X-ray absorption near edge structure (XANES) data indicated that approximately 90% of the total Cr(VI) (962μM) was reduced to Cr(III). Extended X-ray absorption fine structure (EXAFS) fitting results yielded interatomic chromium (CrCr) distances consistent with the formation of Cr(III) precipitates as Cr(OH)3. Trivalent chromium is far less soluble than Cr(VI) and typically precipitates as amorphous Cr(III) solids. Thus, biochars produced by soybean and burcucumber residues are a promising technique for both adsorbing and reductively immobilizing Cr(VI) from aqueous solutions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations

Loading next page...
 
/lp/elsevier/removal-of-hexavalent-chromium-in-aqueous-solutions-using-biochar-KQ0vs0VRcH
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.195
Publisher site
See Article on Publisher Site

Abstract

Biochar is an emerging low-cost sorbent used for removing trace metals from water. In this study, we evaluated the removal potential of aqueous hexavalent chromium (Cr(VI)) by biochars produced from soybean (Glycine max L.) and burcucumber (Sicyos angulatus L.) residues. The highest Cr(VI) removal from solution occurred at low pH values (pH2–5), and adsorption decreased approximately tenfold when the pH increased from 2 to 10. Synchrotron-based X-ray absorption spectroscopy (XAS) investigations showed that Cr(VI) species were reduced to trivalent chromium (Cr(III)) at the biochar surface following Cr(VI) adsorption. Linear combination fitting (LCF) of X-ray absorption near edge structure (XANES) data indicated that approximately 90% of the total Cr(VI) (962μM) was reduced to Cr(III). Extended X-ray absorption fine structure (EXAFS) fitting results yielded interatomic chromium (CrCr) distances consistent with the formation of Cr(III) precipitates as Cr(OH)3. Trivalent chromium is far less soluble than Cr(VI) and typically precipitates as amorphous Cr(III) solids. Thus, biochars produced by soybean and burcucumber residues are a promising technique for both adsorbing and reductively immobilizing Cr(VI) from aqueous solutions.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off