Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China and their probable linkage to the Three Gorges Dam based on Landsat 8 imagery

Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China... The Secchi disk depth (ZSD) plays a critical role in describing water clarity. Several studies have shown linkages between Three Gorges Dam (TGD) and the downstream lacustrine ecosystem in the middle and lower Yangtze River basin. However, the potential influence on the ZSD fluctuation in the entire anthropogenic reservoirs of Three Gorges (ER) and Dongting Lake (DTL) has not been reported, possibly due to technical obstacles in obtaining statistically significant spatial and temporal results. We addressed this challenge by using remote sensing technology: the Landsat 8 Operational Land Imager (OLI). We proposed a new, robust remote-sensing algorithm to estimate ZSD from OLI imagery using red and green band-ratio, leading to MAPE of 21.68% and RMSE of 0.076m for ZSD ranging from 0.1m to 1.05m. After satisfactory image-based validation, the algorithm was implemented on OLI data to derive ZSD patterns over ER and DTL from 2013 to 2017. Several crucial findings can be drawn: 1) Spatial-temporal patterns of ZSD exhibited notable fluctuations over both ER and DTL, and they also demonstrated a significant correlation with each other because of the opposite temporal cycle of ZSD fluctuations between ER and DTL; 2) Temporally, monthly fluctuations of ZSD between ER and DTL had opposite temporal cycles, which was mainly attributed to the surface runoff and sediment discharge driven by the outbound runoff variations of TGD. Spatially, the heterogeneity of the ZSD pattern in ER might have resulted from the different geographical regions being divided by large anthropologic hydrological facilities, such as TGD; 3) The relationship between ZSD and total suspended matter (TSM) showed a significant negative correlation, as did the relationship between ZSD and Kd(490). These findings demonstrate that TSM often plays a principal role in light attenuation of extremely turbid inland waters; 4) An inversed phenomenon of water clarity was observed at the intersection of DTL and the Yangtze River around Chenglingji site (YRAC), which was due to the opposite temporal cycle of ZSD fluctuations between DTL and ER after the impoundment of TGD; and 5) Owing to the analysis of noise-equivalent ZSD, OLI data can be used to derive ZSD, since the imagery uncertainty is 0.07m by means of our band-ratio algorithm, which demonstrates similar results to MODIS. The proposed ZSD-derived algorithm in this study could be suitable for other turbid lakes or reservoirs to formulate related strategies of water quality management in the middle and lower Yangtze River basin, and the unveiled findings here improve our understanding of ZSD spatiotemporal fluctuations in large river-connected lakes, such as Poyang Lake. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China and their probable linkage to the Three Gorges Dam based on Landsat 8 imagery

Loading next page...
 
/lp/elsevier/remote-observation-of-water-clarity-patterns-in-three-gorges-reservoir-qm2OgCeZ0z
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.036
Publisher site
See Article on Publisher Site

Abstract

The Secchi disk depth (ZSD) plays a critical role in describing water clarity. Several studies have shown linkages between Three Gorges Dam (TGD) and the downstream lacustrine ecosystem in the middle and lower Yangtze River basin. However, the potential influence on the ZSD fluctuation in the entire anthropogenic reservoirs of Three Gorges (ER) and Dongting Lake (DTL) has not been reported, possibly due to technical obstacles in obtaining statistically significant spatial and temporal results. We addressed this challenge by using remote sensing technology: the Landsat 8 Operational Land Imager (OLI). We proposed a new, robust remote-sensing algorithm to estimate ZSD from OLI imagery using red and green band-ratio, leading to MAPE of 21.68% and RMSE of 0.076m for ZSD ranging from 0.1m to 1.05m. After satisfactory image-based validation, the algorithm was implemented on OLI data to derive ZSD patterns over ER and DTL from 2013 to 2017. Several crucial findings can be drawn: 1) Spatial-temporal patterns of ZSD exhibited notable fluctuations over both ER and DTL, and they also demonstrated a significant correlation with each other because of the opposite temporal cycle of ZSD fluctuations between ER and DTL; 2) Temporally, monthly fluctuations of ZSD between ER and DTL had opposite temporal cycles, which was mainly attributed to the surface runoff and sediment discharge driven by the outbound runoff variations of TGD. Spatially, the heterogeneity of the ZSD pattern in ER might have resulted from the different geographical regions being divided by large anthropologic hydrological facilities, such as TGD; 3) The relationship between ZSD and total suspended matter (TSM) showed a significant negative correlation, as did the relationship between ZSD and Kd(490). These findings demonstrate that TSM often plays a principal role in light attenuation of extremely turbid inland waters; 4) An inversed phenomenon of water clarity was observed at the intersection of DTL and the Yangtze River around Chenglingji site (YRAC), which was due to the opposite temporal cycle of ZSD fluctuations between DTL and ER after the impoundment of TGD; and 5) Owing to the analysis of noise-equivalent ZSD, OLI data can be used to derive ZSD, since the imagery uncertainty is 0.07m by means of our band-ratio algorithm, which demonstrates similar results to MODIS. The proposed ZSD-derived algorithm in this study could be suitable for other turbid lakes or reservoirs to formulate related strategies of water quality management in the middle and lower Yangtze River basin, and the unveiled findings here improve our understanding of ZSD spatiotemporal fluctuations in large river-connected lakes, such as Poyang Lake.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off