Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across Three Temperate Zone Sites

Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across Three... Mapping and monitoring of leaf area index (LAI) is important for spatially distributed modeling of vegetation productivity, evapotranspiration, and surface energy balance. Global LAI surfaces will be an early product of the MODIS Land Science Team, and the requirements for LAI validation at selected sites have prompted interest in accurate LAI mapping at a more local scale. While spectral vegetation indices (SVIs) derived from satellite remote sensing have been used to map LAI, vegetation type, and related optical properties, and effects of Sun–surface–sensor geometry, background reflectance, and atmospheric quality can limit the strength and generality of empirical LAI–SVI relationships. In the interest of a preliminary assessment of the variability in LAI–SVI relationships across vegetation types, we compared Landsat 5 Thematic Mapper imagery from three temperate zone sites with on-site LAI measurements. The sites differed widely in location, vegetation physiognomy (grass, shrubs, hardwood forest, and conifer forest), and topographic complexity. Comparisons were made using three different red and near-infrared-based SVIs (NDVI, SR, SAVI). Several derivations of the SVIs were examined, including those based on raw digital numbers (DN), radiance, top of the atmosphere reflectance, and atmospherically corrected reflectance. For one of the sites, which had extreme topographic complexity, additional corrections were made for Sun–surface–sensor geometry. Across all sites, a strong general relationship was preserved, with SVIs increasing up to LAI values of 3 to 5. For all but the coniferous forest site, sensitivity of the SVIs was low at LAI values above 5. In coniferous forests, the SVIs decreased at the highest LAI values because of decreasing near-infrared reflectance associated with the complex canopy in these mature to old-growth stands. The cross-site LAI–SVI relationships based on atmospherically corrected imagery were stronger than those based on DN, radiance, or top of atmosphere reflectance. Topographic corrections at the conifer site altered the SVIs in some cases but had little effect on the LAI–SVI relationships. Significant effects of vegetation properties on SVIs, which were independent of LAI, were evident. The variability between and around the best fit LAI–SVI relationships for this dataset suggests that for local accuracy in development of LAI surfaces it will be desirable to stratify by land cover classes (e.g., physiognomic type and successional stage) and to vary the SVI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing of Environment Elsevier

Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across Three Temperate Zone Sites

Loading next page...
 
/lp/elsevier/relationships-between-leaf-area-index-and-landsat-tm-spectral-R3JwLK4MM1
Publisher
Elsevier
Copyright
Copyright © 1999 Elsevier Science Inc.
ISSN
0034-4257
DOI
10.1016/S0034-4257(99)00057-7
Publisher site
See Article on Publisher Site

Abstract

Mapping and monitoring of leaf area index (LAI) is important for spatially distributed modeling of vegetation productivity, evapotranspiration, and surface energy balance. Global LAI surfaces will be an early product of the MODIS Land Science Team, and the requirements for LAI validation at selected sites have prompted interest in accurate LAI mapping at a more local scale. While spectral vegetation indices (SVIs) derived from satellite remote sensing have been used to map LAI, vegetation type, and related optical properties, and effects of Sun–surface–sensor geometry, background reflectance, and atmospheric quality can limit the strength and generality of empirical LAI–SVI relationships. In the interest of a preliminary assessment of the variability in LAI–SVI relationships across vegetation types, we compared Landsat 5 Thematic Mapper imagery from three temperate zone sites with on-site LAI measurements. The sites differed widely in location, vegetation physiognomy (grass, shrubs, hardwood forest, and conifer forest), and topographic complexity. Comparisons were made using three different red and near-infrared-based SVIs (NDVI, SR, SAVI). Several derivations of the SVIs were examined, including those based on raw digital numbers (DN), radiance, top of the atmosphere reflectance, and atmospherically corrected reflectance. For one of the sites, which had extreme topographic complexity, additional corrections were made for Sun–surface–sensor geometry. Across all sites, a strong general relationship was preserved, with SVIs increasing up to LAI values of 3 to 5. For all but the coniferous forest site, sensitivity of the SVIs was low at LAI values above 5. In coniferous forests, the SVIs decreased at the highest LAI values because of decreasing near-infrared reflectance associated with the complex canopy in these mature to old-growth stands. The cross-site LAI–SVI relationships based on atmospherically corrected imagery were stronger than those based on DN, radiance, or top of atmosphere reflectance. Topographic corrections at the conifer site altered the SVIs in some cases but had little effect on the LAI–SVI relationships. Significant effects of vegetation properties on SVIs, which were independent of LAI, were evident. The variability between and around the best fit LAI–SVI relationships for this dataset suggests that for local accuracy in development of LAI surfaces it will be desirable to stratify by land cover classes (e.g., physiognomic type and successional stage) and to vary the SVI.

Journal

Remote Sensing of EnvironmentElsevier

Published: Oct 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off