Regulation of pregnane-X-receptor and microRNAs on detoxification-related genes expressions in Mugilogobius abei under the exposure to diclofenac

Regulation of pregnane-X-receptor and microRNAs on detoxification-related genes expressions in... Diclofenac (DCF) has been recognized as an emerging contaminant in aquatic environments. Though many studies have investigated the toxic effects of DCF in human and mammals, limited information is available for the responses of genes associated with detoxification metabolisms in non-target aquatic organisms such as fish. In the present study, a small benthic fish Mugilogobius abei, was chosen as the test organism and the effects of DCF on detoxification-related genes at transcriptional level in M. abei were investigated. Partial cDNAs of pregnane-X-receptor (pxr), cytochrome P450 3A (cyp 3a) and alpha-gst were cloned firstly. The responses of cyp 1a, cyp 3a, alpha-gst and p-gp genes and associated microRNAs expressions were measured under different concentrations of DCF exposure (0.5, 5, 50, 500 μg/L) for 24 h and 168 h. Induction of cyp 1a, cyp 3a, alpha-gst, p-gp and pxr mRNA expressions was observed under DCF exposure for different time. Positive concentration-response relationships between DCF concentrations and cyp 1a as well as alpha-gst mRNA expression were observed under DCF exposure for 24 h. The similar trend between pxr mRNA expression and cyp 3a gene expression suggested the role of pxr in regulation of its downstream detoxification genes involved in DCF detoxification in M. abei. The negative correlation between miR-27a and p-gp expression under DCF exposure for 24 h indicated the role of miRNA in post transcriptional regulation on detoxification-related genes mRNAs in M. abei exposed to DCF. Overall, DCF exposure, even at environmental levels, may interrupt the responses of the detoxification genes in M. abei, which may affect the response of the exposed organism to other pollutants. This work provides implications on the bio-monitoring and risk assessment of DCF in aquatic ecosystems by using of local native fish species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Regulation of pregnane-X-receptor and microRNAs on detoxification-related genes expressions in Mugilogobius abei under the exposure to diclofenac

Loading next page...
 
/lp/elsevier/regulation-of-pregnane-x-receptor-and-micrornas-on-detoxification-TaAsfAxEfb
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.10.080
Publisher site
See Article on Publisher Site

Abstract

Diclofenac (DCF) has been recognized as an emerging contaminant in aquatic environments. Though many studies have investigated the toxic effects of DCF in human and mammals, limited information is available for the responses of genes associated with detoxification metabolisms in non-target aquatic organisms such as fish. In the present study, a small benthic fish Mugilogobius abei, was chosen as the test organism and the effects of DCF on detoxification-related genes at transcriptional level in M. abei were investigated. Partial cDNAs of pregnane-X-receptor (pxr), cytochrome P450 3A (cyp 3a) and alpha-gst were cloned firstly. The responses of cyp 1a, cyp 3a, alpha-gst and p-gp genes and associated microRNAs expressions were measured under different concentrations of DCF exposure (0.5, 5, 50, 500 μg/L) for 24 h and 168 h. Induction of cyp 1a, cyp 3a, alpha-gst, p-gp and pxr mRNA expressions was observed under DCF exposure for different time. Positive concentration-response relationships between DCF concentrations and cyp 1a as well as alpha-gst mRNA expression were observed under DCF exposure for 24 h. The similar trend between pxr mRNA expression and cyp 3a gene expression suggested the role of pxr in regulation of its downstream detoxification genes involved in DCF detoxification in M. abei. The negative correlation between miR-27a and p-gp expression under DCF exposure for 24 h indicated the role of miRNA in post transcriptional regulation on detoxification-related genes mRNAs in M. abei exposed to DCF. Overall, DCF exposure, even at environmental levels, may interrupt the responses of the detoxification genes in M. abei, which may affect the response of the exposed organism to other pollutants. This work provides implications on the bio-monitoring and risk assessment of DCF in aquatic ecosystems by using of local native fish species.

Journal

Environmental PollutionElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off