Regional-scale electric power system planning under uncertainty—A multistage interval-stochastic integer linear programming approach

Regional-scale electric power system planning under uncertainty—A multistage... In this study, a multistage interval-stochastic regional-scale energy model (MIS-REM) is developed for supporting electric power system (EPS) planning under uncertainty that is based on a multistage interval-stochastic integer linear programming method. The developed MIS-REM can deal with uncertainties expressed as both probability distributions and interval values existing in energy system planning problems. Moreover, it can reflect dynamic decisions for electricity generation schemes and capacity expansions through transactions at discrete points of a multiple representative scenario set over a multistage context. It can also analyze various energy-policy scenarios that are associated with economic penalties when the regulated targets are violated. A case study is provided for demonstrating the applicability of the developed model, where renewable and non-renewable energy resources, economic concerns, and environmental requirements are integrated into a systematic optimization process. The results obtained are helpful for supporting (a) adjustment or justification of allocation patterns of regional energy resources and services, (b) formulation of local policies regarding energy consumption, economic development, and energy structure, and (c) analysis of interactions among economic cost, environmental requirement, and energy-supply security. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Energy Policy Elsevier

Regional-scale electric power system planning under uncertainty—A multistage interval-stochastic integer linear programming approach

Loading next page...
 
/lp/elsevier/regional-scale-electric-power-system-planning-under-uncertainty-a-9XWyRDM2p9
Publisher
Elsevier
Copyright
Copyright © 2009 Elsevier Ltd
ISSN
0301-4215
D.O.I.
10.1016/j.enpol.2009.09.038
Publisher site
See Article on Publisher Site

Abstract

In this study, a multistage interval-stochastic regional-scale energy model (MIS-REM) is developed for supporting electric power system (EPS) planning under uncertainty that is based on a multistage interval-stochastic integer linear programming method. The developed MIS-REM can deal with uncertainties expressed as both probability distributions and interval values existing in energy system planning problems. Moreover, it can reflect dynamic decisions for electricity generation schemes and capacity expansions through transactions at discrete points of a multiple representative scenario set over a multistage context. It can also analyze various energy-policy scenarios that are associated with economic penalties when the regulated targets are violated. A case study is provided for demonstrating the applicability of the developed model, where renewable and non-renewable energy resources, economic concerns, and environmental requirements are integrated into a systematic optimization process. The results obtained are helpful for supporting (a) adjustment or justification of allocation patterns of regional energy resources and services, (b) formulation of local policies regarding energy consumption, economic development, and energy structure, and (c) analysis of interactions among economic cost, environmental requirement, and energy-supply security.

Journal

Energy PolicyElsevier

Published: Jan 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off