Redox Control of Caspase-3 Activity by Thioredoxin and Other Reduced Proteins

Redox Control of Caspase-3 Activity by Thioredoxin and Other Reduced Proteins Caspases are cysteine proteinases that play a critical role in the execution phase of apoptosis. The active site cysteine residue must be reduced for caspase activity. Thioredoxins are redox proteins that catalyze the reduction of cysteine residues. We have examined the ability of various recombinant human thioredoxins to activate caspase-3. The EC 50 for caspase-3 activation by reduced thioredoxin-1 was 2.5 μM, by reduced glutathione 1.0 mM and by dithiothreitol 3.5 mM. A catalytic site redox-inactive mutant thioredoxin-1 was almost as active as thioredoxin-1 in activating caspase-3. Caspase activation was shown to correlate with the number of reduced cysteine residues in the thioredoxins. Reduced insulin and serum albumin were as effective on a molar basis as thioredoxin-1 in activating caspase-3. Thus, caspase-3 activation is not a specific effect of thioredoxins but is a property shared by other reduced proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

Redox Control of Caspase-3 Activity by Thioredoxin and Other Reduced Proteins

Loading next page...
 
/lp/elsevier/redox-control-of-caspase-3-activity-by-thioredoxin-and-other-reduced-aHkkUjFDgX
Publisher
Elsevier
Copyright
Copyright © 2000 Academic Press
ISSN
0006-291x
D.O.I.
10.1006/bbrc.1999.1908
Publisher site
See Article on Publisher Site

Abstract

Caspases are cysteine proteinases that play a critical role in the execution phase of apoptosis. The active site cysteine residue must be reduced for caspase activity. Thioredoxins are redox proteins that catalyze the reduction of cysteine residues. We have examined the ability of various recombinant human thioredoxins to activate caspase-3. The EC 50 for caspase-3 activation by reduced thioredoxin-1 was 2.5 μM, by reduced glutathione 1.0 mM and by dithiothreitol 3.5 mM. A catalytic site redox-inactive mutant thioredoxin-1 was almost as active as thioredoxin-1 in activating caspase-3. Caspase activation was shown to correlate with the number of reduced cysteine residues in the thioredoxins. Reduced insulin and serum albumin were as effective on a molar basis as thioredoxin-1 in activating caspase-3. Thus, caspase-3 activation is not a specific effect of thioredoxins but is a property shared by other reduced proteins.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Feb 5, 2000

References

  • Cancer Res.
    Kawahara, N.; Tanaka, T.; Yokomizo, A.; Nanri, H.; Ono, M.; Wada, M.; Kohno, K.; Takenaka, K.; Sugimachi, K.; Kuwano, M.
  • Cancer Res.
    Gallegos, A.; Gasdaska, J.R.; Taylor, C.W.; Paine-Murrieta, G.D.; Goodman, D.; Gasdaska, P.Y.; Berggren, M.; Briehl, M.M.; Powis, G.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off