Recovery and protection of coastal ecosystems after tsunami event and potential for participatory forestry CDM – Examples from Sri Lanka

Recovery and protection of coastal ecosystems after tsunami event and potential for participatory... By using an integrated approach, tsunami affected land, vegetation and inhabitants were assessed to evaluate the potential to restore and protect coastal land in the context of Kyoto Protocol's Clean Development Mechanism in Hambantota district in the south-eastern part of Sri Lanka. Firstly, assessments of the status of the tsunami affected area were carried out by collecting soil and well water samplings for carbon and salinity analysis. Secondly, identification of potential tree species for carbon sequestration and sustainable development was conducted to determine carbon stock and suitability to grow under the prevailing conditions. In addition, interviews to understand the local people's perception of forest plantations and land use were conducted. The results showed that the resilience process of salt intruded lands from the 2004 Asian tsunami has progressed rapidly with low salinity level in the soils 14 months after the event, while the well water showed evidence of salinity contamination. The carbon stock was highest in natural forests followed by coconut plantations. Land users could envision expanding their present plantations or establish new ones. The barriers were defined as lack of financial investment capital and limited land for extended plantations. If a Clean Development Mechanism project is to be established, the coconut tree was found to be the most appropriate tree species since it has high carbon content, had co-benefits and possesses a salt-tolerant characteristic. Finally, the tsunami event has triggered land users to perceive environmental benefits of protection from mangrove or other adequate vegetation such as coconut plantations as welcome and desired to decrease their vulnerability. The assessment of multi-functionality of forest plantations, such as small-scale community based Clean Development Mechanism, its generated income from carbon credits as well as the wish for environmental protection should be considered to increase the attractiveness of plantation projects in the coastal areas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean & Coastal Management Elsevier

Recovery and protection of coastal ecosystems after tsunami event and potential for participatory forestry CDM – Examples from Sri Lanka

Loading next page...
 
/lp/elsevier/recovery-and-protection-of-coastal-ecosystems-after-tsunami-event-and-JxYhUBsl0v
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier Ltd
ISSN
0964-5691
DOI
10.1016/j.ocecoaman.2008.09.007
Publisher site
See Article on Publisher Site

Abstract

By using an integrated approach, tsunami affected land, vegetation and inhabitants were assessed to evaluate the potential to restore and protect coastal land in the context of Kyoto Protocol's Clean Development Mechanism in Hambantota district in the south-eastern part of Sri Lanka. Firstly, assessments of the status of the tsunami affected area were carried out by collecting soil and well water samplings for carbon and salinity analysis. Secondly, identification of potential tree species for carbon sequestration and sustainable development was conducted to determine carbon stock and suitability to grow under the prevailing conditions. In addition, interviews to understand the local people's perception of forest plantations and land use were conducted. The results showed that the resilience process of salt intruded lands from the 2004 Asian tsunami has progressed rapidly with low salinity level in the soils 14 months after the event, while the well water showed evidence of salinity contamination. The carbon stock was highest in natural forests followed by coconut plantations. Land users could envision expanding their present plantations or establish new ones. The barriers were defined as lack of financial investment capital and limited land for extended plantations. If a Clean Development Mechanism project is to be established, the coconut tree was found to be the most appropriate tree species since it has high carbon content, had co-benefits and possesses a salt-tolerant characteristic. Finally, the tsunami event has triggered land users to perceive environmental benefits of protection from mangrove or other adequate vegetation such as coconut plantations as welcome and desired to decrease their vulnerability. The assessment of multi-functionality of forest plantations, such as small-scale community based Clean Development Mechanism, its generated income from carbon credits as well as the wish for environmental protection should be considered to increase the attractiveness of plantation projects in the coastal areas.

Journal

Ocean & Coastal ManagementElsevier

Published: Jan 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off