Real-time energy-efficient traffic control via convex optimization

Real-time energy-efficient traffic control via convex optimization This article proposes a macroscopic traffic control strategy to reduce fuel consumption of vehicles on highways. By implementing Greenshields fundamental diagram, the solution to Moskowitz equations is expressed as linear functions with respect to vehicle inflow and outflow, which leads to generation of a linear traffic flow model. In addition, we build a quadratic cost function in terms of vehicle volume to estimate fuel consumption rate based on COPERT model. A convex quadratic optimization problem is then formulated to generate energy-efficient traffic control decisions in real-time. Simulation results demonstrate significant reduction of fuel consumption on testing highway sections under peak traffic demands of busy hours. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Transportation Research Part C: Emerging Technologies Elsevier

Real-time energy-efficient traffic control via convex optimization

Loading next page...
 
/lp/elsevier/real-time-energy-efficient-traffic-control-via-convex-optimization-2ldB9pPwvu
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0968-090X
D.O.I.
10.1016/j.trc.2018.04.017
Publisher site
See Article on Publisher Site

Abstract

This article proposes a macroscopic traffic control strategy to reduce fuel consumption of vehicles on highways. By implementing Greenshields fundamental diagram, the solution to Moskowitz equations is expressed as linear functions with respect to vehicle inflow and outflow, which leads to generation of a linear traffic flow model. In addition, we build a quadratic cost function in terms of vehicle volume to estimate fuel consumption rate based on COPERT model. A convex quadratic optimization problem is then formulated to generate energy-efficient traffic control decisions in real-time. Simulation results demonstrate significant reduction of fuel consumption on testing highway sections under peak traffic demands of busy hours.

Journal

Transportation Research Part C: Emerging TechnologiesElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off