Reaction and relaxation in a coarse-grained fluvial system following catchment-wide disturbance

Reaction and relaxation in a coarse-grained fluvial system following catchment-wide disturbance The Waiapu River catchment (drainage area of 1734-km2) is one of the most prolific conveyors of sediment in the world, annually delivering roughly 35Mt of fine material to the ocean from eroding gullies, hillslopes, and reworked sediment on valley floors. Tectonic and geologic influences, in combination with a dynamic climate influenced by tropical cyclones and clearance of vegetation from steep hillslopes, predisposes this region to high rates of erosion. The bedload sediment regime of the river is strongly influenced by several exceptionally large gullies and gully complexes that produce a coarse-grained, poorly sorted sediment mixture. Rapid abrasion and breakdown leads to high rates of suspended sediment yield. A wave of bedload material, manifesting as elevated bed levels and significant widening of active alluvial fills, has been triggered by large inputs of hillslope material from a few key tributary catchments following Cyclone Bola in 1988. We review the evidence for the relaxation process of the sedimentary system in the subsequent 29 years, appraising some of the legacy effects that may endure, as associated with reworking of the considerable alluvial stores within the Waiapu system. We use Structure-from-Motion (SfM) techniques and archival aerial photos to quantify changes in sediment storage at the base of two major gully systems in recent decades. A record of over 850 cross section surveys at 62 sites on 10 rivers throughout the catchment (1958–2017) indicates recent transition from a trend of continuous accumulation to downcutting and remobilisation of valley-bottom deposits. The channel cross sections provide a minimum estimate of sediment flux from source areas to the lower reaches of the river, giving a rudimentary but spatially extensive picture of the wave of material cascading through the drainage network. The largest impacts occur in the upper steepland rivers, closest to the landslide-derived sediment supply. Transport rates here, as inferred from cross section change, are at a maximum during an aggradational phase following Cyclone Bola then taper off, despite the large sediment accumulations remaining in the system. As of 2017, the river is in the process of incising the upper extents of this deposit on a trajectory of recovery toward pre-Bola conditions. The compilation of cross section data provides us with new insights into the sensitivity of particular sites in the landscape, as well as the changing relationship between reach sediment storage and transport rates during the response and relaxation phase of a major disturbance in a large catchment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geomorphology Elsevier

Reaction and relaxation in a coarse-grained fluvial system following catchment-wide disturbance

Loading next page...
 
/lp/elsevier/reaction-and-relaxation-in-a-coarse-grained-fluvial-system-following-UkIETMAN9R
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0169-555X
eISSN
1872-695X
D.O.I.
10.1016/j.geomorph.2017.11.006
Publisher site
See Article on Publisher Site

Abstract

The Waiapu River catchment (drainage area of 1734-km2) is one of the most prolific conveyors of sediment in the world, annually delivering roughly 35Mt of fine material to the ocean from eroding gullies, hillslopes, and reworked sediment on valley floors. Tectonic and geologic influences, in combination with a dynamic climate influenced by tropical cyclones and clearance of vegetation from steep hillslopes, predisposes this region to high rates of erosion. The bedload sediment regime of the river is strongly influenced by several exceptionally large gullies and gully complexes that produce a coarse-grained, poorly sorted sediment mixture. Rapid abrasion and breakdown leads to high rates of suspended sediment yield. A wave of bedload material, manifesting as elevated bed levels and significant widening of active alluvial fills, has been triggered by large inputs of hillslope material from a few key tributary catchments following Cyclone Bola in 1988. We review the evidence for the relaxation process of the sedimentary system in the subsequent 29 years, appraising some of the legacy effects that may endure, as associated with reworking of the considerable alluvial stores within the Waiapu system. We use Structure-from-Motion (SfM) techniques and archival aerial photos to quantify changes in sediment storage at the base of two major gully systems in recent decades. A record of over 850 cross section surveys at 62 sites on 10 rivers throughout the catchment (1958–2017) indicates recent transition from a trend of continuous accumulation to downcutting and remobilisation of valley-bottom deposits. The channel cross sections provide a minimum estimate of sediment flux from source areas to the lower reaches of the river, giving a rudimentary but spatially extensive picture of the wave of material cascading through the drainage network. The largest impacts occur in the upper steepland rivers, closest to the landslide-derived sediment supply. Transport rates here, as inferred from cross section change, are at a maximum during an aggradational phase following Cyclone Bola then taper off, despite the large sediment accumulations remaining in the system. As of 2017, the river is in the process of incising the upper extents of this deposit on a trajectory of recovery toward pre-Bola conditions. The compilation of cross section data provides us with new insights into the sensitivity of particular sites in the landscape, as well as the changing relationship between reach sediment storage and transport rates during the response and relaxation phase of a major disturbance in a large catchment.

Journal

GeomorphologyElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off