rApoptin induces apoptosis in human breast cancer cells via phosphorylation of Nur77 and Akt

rApoptin induces apoptosis in human breast cancer cells via phosphorylation of Nur77 and Akt Breast cancer is the leading cause of cancer incidence and cancer-related mortality among women and is becoming a major public health problem around the world. The current study aims to investigate the possible role and mechanism of recombinant Apoptin (rApoptin), a potential anticancer candidate that minimally impacts normal cells, in the breast cancer cell proliferation and apoptosis in vitro and in vivo. We found that rApoptin could effectively inhibit the proliferation and apoptosis in MCF-7 and MDA-MB-231 cells in vitro, which was further confirmed by flow cytometry analysis. Apoptin partially inhibited MCF-7 cell xenograft tumor development in vivo. Furthermore, we found via western blot that rApoptin-induced apoptosis in MCF-7 and MDA-MB-231 cells was associated with the phosphorylation of Nur77 (p-Nur77) and Akt (p-Akt). In addition, compared with the control groups, rApoptin-treated tissues showed significantly higher expression of Bax and Cyt c while Bcl-2 expression was decreased by rApoptin treatment. Together, our results are the first to demonstrate that rApoptin was able to effectively induce breast cancer cell apoptosis both in vitro and in vivo and that this activity could be regulated by the phosphorylation of Nur77 and Akt and the mitochondrial pathway. Our findings highlight the potential application of rApoptin as a breast cancer treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

rApoptin induces apoptosis in human breast cancer cells via phosphorylation of Nur77 and Akt

Loading next page...
 
/lp/elsevier/rapoptin-induces-apoptosis-in-human-breast-cancer-cells-via-O6o4ZVODrd
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2018.02.204
Publisher site
See Article on Publisher Site

Abstract

Breast cancer is the leading cause of cancer incidence and cancer-related mortality among women and is becoming a major public health problem around the world. The current study aims to investigate the possible role and mechanism of recombinant Apoptin (rApoptin), a potential anticancer candidate that minimally impacts normal cells, in the breast cancer cell proliferation and apoptosis in vitro and in vivo. We found that rApoptin could effectively inhibit the proliferation and apoptosis in MCF-7 and MDA-MB-231 cells in vitro, which was further confirmed by flow cytometry analysis. Apoptin partially inhibited MCF-7 cell xenograft tumor development in vivo. Furthermore, we found via western blot that rApoptin-induced apoptosis in MCF-7 and MDA-MB-231 cells was associated with the phosphorylation of Nur77 (p-Nur77) and Akt (p-Akt). In addition, compared with the control groups, rApoptin-treated tissues showed significantly higher expression of Bax and Cyt c while Bcl-2 expression was decreased by rApoptin treatment. Together, our results are the first to demonstrate that rApoptin was able to effectively induce breast cancer cell apoptosis both in vitro and in vivo and that this activity could be regulated by the phosphorylation of Nur77 and Akt and the mitochondrial pathway. Our findings highlight the potential application of rApoptin as a breast cancer treatment.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Mar 25, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial