Rapid synthesis of three-dimensional network structure CuO as binder-free anode for high-rate sodium ion battery

Rapid synthesis of three-dimensional network structure CuO as binder-free anode for high-rate... We report on the preparation of the three dimensional (3D) network structure CuO by rapid and facile engraving method and their application as high rate anode for sodium ion battery. The CuO is rapidly synthesized by in-situ etched and oxidated the specified Cu foils within 15 min. It shows the 3D network architecture with flower-like nanosheets connected by nanowires, which provides the porous structure, short ion diffusion pathway and collaborative electronic transmission. Furthermore, the etched CuO can be directly used as anode for sodium ion battery without polymer additions or conductive agents. The electrodes exhibit excellent electrochemical performance with a high capacity of 680 mAh·g−1 at 50 mA g−1 and a reversible capacity of 280 mAh·g−1 at 1000 mA g−1. In addition, the electrochemical reaction and detail charge/discharge process are carefully explored to discover the conversion reaction routes and the recession reason. Thus, the 3D network structure CuO might open an insight for transition-metal oxides as energy storage materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Rapid synthesis of three-dimensional network structure CuO as binder-free anode for high-rate sodium ion battery

Loading next page...
 
/lp/elsevier/rapid-synthesis-of-three-dimensional-network-structure-cuo-as-binder-qCuxsj1R0z
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.04.063
Publisher site
See Article on Publisher Site

Abstract

We report on the preparation of the three dimensional (3D) network structure CuO by rapid and facile engraving method and their application as high rate anode for sodium ion battery. The CuO is rapidly synthesized by in-situ etched and oxidated the specified Cu foils within 15 min. It shows the 3D network architecture with flower-like nanosheets connected by nanowires, which provides the porous structure, short ion diffusion pathway and collaborative electronic transmission. Furthermore, the etched CuO can be directly used as anode for sodium ion battery without polymer additions or conductive agents. The electrodes exhibit excellent electrochemical performance with a high capacity of 680 mAh·g−1 at 50 mA g−1 and a reversible capacity of 280 mAh·g−1 at 1000 mA g−1. In addition, the electrochemical reaction and detail charge/discharge process are carefully explored to discover the conversion reaction routes and the recession reason. Thus, the 3D network structure CuO might open an insight for transition-metal oxides as energy storage materials.

Journal

Journal of Power SourcesElsevier

Published: Jul 15, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off