Quantifying forest above ground carbon content using LiDAR remote sensing

Quantifying forest above ground carbon content using LiDAR remote sensing The UNFCCC and interest in the source of the missing terrestrial carbon sink are prompting research and development into methods for carbon accounting in forest ecosystems. Here we present a canopy height quantile-based approach for quantifying above ground carbon content (AGCC) in a temperate deciduous woodland, by means of a discrete-return, small-footprint airborne LiDAR. Fieldwork was conducted in Monks Wood National Nature Reserve UK to estimate the AGCC of five stands from forest mensuration and allometric relations. In parallel, a digital canopy height model (DCHM) and a digital terrain model (DTM) were derived from elevation measurements obtained by means of an Optech Airborne Laser Terrain Mapper 1210. A quantile-based approach was adopted to select a representative statistic of height distributions per plot. A forestry yield model was selected as a basis to estimate stemwood volume per plot from these heights metrics. Agreement of r =0.74 at the plot level was achieved between ground-based AGCC estimates and those derived from the DCHM. Using a 20×20 m grids superposed to the DCHM, the AGCC was estimated at the stand level and at the woodland level. At the stand level, the agreement between the plot data upscaled in proportion to area and the LiDAR estimates was r =0.85. At the woodland level, LiDAR estimates were nearly 24% lower than those from the upscaled plot data. This suggests that field-based approaches alone may not be adequate for carbon accounting in heterogeneous forests. Conversely, the LiDAR 20×20 m grid approach has an enhanced capability of monitoring the natural variability of AGCC across the woodland. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing of Environment Elsevier

Quantifying forest above ground carbon content using LiDAR remote sensing

Loading next page...
 
/lp/elsevier/quantifying-forest-above-ground-carbon-content-using-lidar-remote-gnLUwJPUun
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Inc.
ISSN
0034-4257
DOI
10.1016/j.rse.2004.07.016
Publisher site
See Article on Publisher Site

Abstract

The UNFCCC and interest in the source of the missing terrestrial carbon sink are prompting research and development into methods for carbon accounting in forest ecosystems. Here we present a canopy height quantile-based approach for quantifying above ground carbon content (AGCC) in a temperate deciduous woodland, by means of a discrete-return, small-footprint airborne LiDAR. Fieldwork was conducted in Monks Wood National Nature Reserve UK to estimate the AGCC of five stands from forest mensuration and allometric relations. In parallel, a digital canopy height model (DCHM) and a digital terrain model (DTM) were derived from elevation measurements obtained by means of an Optech Airborne Laser Terrain Mapper 1210. A quantile-based approach was adopted to select a representative statistic of height distributions per plot. A forestry yield model was selected as a basis to estimate stemwood volume per plot from these heights metrics. Agreement of r =0.74 at the plot level was achieved between ground-based AGCC estimates and those derived from the DCHM. Using a 20×20 m grids superposed to the DCHM, the AGCC was estimated at the stand level and at the woodland level. At the stand level, the agreement between the plot data upscaled in proportion to area and the LiDAR estimates was r =0.85. At the woodland level, LiDAR estimates were nearly 24% lower than those from the upscaled plot data. This suggests that field-based approaches alone may not be adequate for carbon accounting in heterogeneous forests. Conversely, the LiDAR 20×20 m grid approach has an enhanced capability of monitoring the natural variability of AGCC across the woodland.

Journal

Remote Sensing of EnvironmentElsevier

Published: Nov 15, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off