Proteolytic and Conformational Control of Virus Capsid Maturation: The Bacteriophage HK97 System

Proteolytic and Conformational Control of Virus Capsid Maturation: The Bacteriophage HK97 System Bacteriophage capsid assembly pathways provide excellent model systems to study large-scale conformational changes and other mechanisms that regulate the formation of macromolecular complexes. These capsids are formed from proheads: relatively fragile precursor particles which mature by undergoing extensive remodeling. Phage HK97 employs novel features in its strategy for building capsids, including assembly without a scaffolding protein, and the formation of a network of covalent cross-links between neighboring subunits in the mature virion. In addition, proteolytic cleavage of the capsid protein from 42 kDa to 31 kDa is essential for maturation. To investigate the structural bases for proteolysis and cross-linking, we have used cryo-electron micrographs to reconstruct the three-dimensional structures of purified particles from four discrete stages in the assembly pathway: Prohead I, Prohead II, Head I and Head II. Prohead I has icosahedral T = 7 packing of blister-shaped pentamers and hexamers. The pentamers are 5-fold symmetric, but the hexamers exhibit an unusual departure from 6-fold symmetry, as if two trimers had undergone a shear dislocation of about 25 Å. Proteolytic conversion to Prohead II leaves the outer surface largely unchanged, but a major loss of density from the inner surface is observed, which we infer to represent the excision of the aminoterminal domains of the capsid protein. Upon expansion to the Head I state, the capsid becomes markedly larger, thinner walled, and more polyhedral: moreover, the capsomer shapes change radically; especially notable is the disappearance of the large hexon dislocation. No differences between Head I and the covalently cross-linked Head II could be observed at the current resolution of about 25 Å, from which we infer that it is the conformational rearrangements effected by expansion that create the micro-environments needed for the autocatalytic formation of the iso-dipeptide bonds found in the mature virions (“pseudo-active sites”). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Biology Elsevier

Proteolytic and Conformational Control of Virus Capsid Maturation: The Bacteriophage HK97 System

Loading next page...
 
/lp/elsevier/proteolytic-and-conformational-control-of-virus-capsid-maturation-the-YV9zq20E2a
Publisher
Elsevier
Copyright
Copyright © 1995 Academic Press
ISSN
0022-2836
DOI
10.1006/jmbi.1995.0538
Publisher site
See Article on Publisher Site

Abstract

Bacteriophage capsid assembly pathways provide excellent model systems to study large-scale conformational changes and other mechanisms that regulate the formation of macromolecular complexes. These capsids are formed from proheads: relatively fragile precursor particles which mature by undergoing extensive remodeling. Phage HK97 employs novel features in its strategy for building capsids, including assembly without a scaffolding protein, and the formation of a network of covalent cross-links between neighboring subunits in the mature virion. In addition, proteolytic cleavage of the capsid protein from 42 kDa to 31 kDa is essential for maturation. To investigate the structural bases for proteolysis and cross-linking, we have used cryo-electron micrographs to reconstruct the three-dimensional structures of purified particles from four discrete stages in the assembly pathway: Prohead I, Prohead II, Head I and Head II. Prohead I has icosahedral T = 7 packing of blister-shaped pentamers and hexamers. The pentamers are 5-fold symmetric, but the hexamers exhibit an unusual departure from 6-fold symmetry, as if two trimers had undergone a shear dislocation of about 25 Å. Proteolytic conversion to Prohead II leaves the outer surface largely unchanged, but a major loss of density from the inner surface is observed, which we infer to represent the excision of the aminoterminal domains of the capsid protein. Upon expansion to the Head I state, the capsid becomes markedly larger, thinner walled, and more polyhedral: moreover, the capsomer shapes change radically; especially notable is the disappearance of the large hexon dislocation. No differences between Head I and the covalently cross-linked Head II could be observed at the current resolution of about 25 Å, from which we infer that it is the conformational rearrangements effected by expansion that create the micro-environments needed for the autocatalytic formation of the iso-dipeptide bonds found in the mature virions (“pseudo-active sites”).

Journal

Journal of Molecular BiologyElsevier

Published: Oct 13, 1995

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off