Progressive damage and failure analysis of three-dimensional braided composites subjected to biaxial tension and compression

Progressive damage and failure analysis of three-dimensional braided composites subjected to... This paper investigates the failure behavior of three-dimensional (3D) braided composites subjected to biaxial tension and compression through an improved micromechanical computational method and the finite element (FE) method. The yarns and the out-of-yarn matrix in the composites are modeled by an extended Hashin criterion and an extended Drucker-Prager criterion, respectively. The uniaxial mechanical properties are analyzed based on the available experimental data as a verification of the models. The biaxial progressive damage and failure behavior are investigated using the models. The braiding structure, whose diversity results in the difference in failure modes during damage evolution, has significant influence on the biaxial failure correlation of the composites. The predicting formulae for failure envelopes are suggested in this study. The failure envelopes of 3D four-directional and five-directional braided composites can be described by quadratic tensor theories, and the envelopes of 3D six-directional and seven-directional braided composites can be predicted by the maximum strain criterion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Progressive damage and failure analysis of three-dimensional braided composites subjected to biaxial tension and compression

Loading next page...
 
/lp/elsevier/progressive-damage-and-failure-analysis-of-three-dimensional-braided-ccgxC3xVrW
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.11.041
Publisher site
See Article on Publisher Site

Abstract

This paper investigates the failure behavior of three-dimensional (3D) braided composites subjected to biaxial tension and compression through an improved micromechanical computational method and the finite element (FE) method. The yarns and the out-of-yarn matrix in the composites are modeled by an extended Hashin criterion and an extended Drucker-Prager criterion, respectively. The uniaxial mechanical properties are analyzed based on the available experimental data as a verification of the models. The biaxial progressive damage and failure behavior are investigated using the models. The braiding structure, whose diversity results in the difference in failure modes during damage evolution, has significant influence on the biaxial failure correlation of the composites. The predicting formulae for failure envelopes are suggested in this study. The failure envelopes of 3D four-directional and five-directional braided composites can be described by quadratic tensor theories, and the envelopes of 3D six-directional and seven-directional braided composites can be predicted by the maximum strain criterion.

Journal

Composite StructuresElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off