Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method

Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using... Waste oyster shells cause great environmental concerns and nickel is a harmful heavy metal. Therefore, we applied the Taguchi method to take care of both issues by optimizing the controllable factors for Ni(II) removal by calcined oyster shell powders (OSP), including the pH (P), OSP calcined temperature (T), Ni(II) concentration (C), OSP dose (D), and contact time (t). The results show that their percentage contribution in descending order is P (64.3%) > T (18.9%) > C (8.8%) > D (5.1%) > t (1.7%). The optimum condition is pH of 10 and OSP calcined temperature of 900 °C. Under the optimum condition, the Ni(II) can be removed almost completely; the higher the pH, the more the precipitation; the higher the calcined temperature, the more the adsorption. The latter is due to the large number of porosities created at the calcination temperature of 900 °C. The porosities generate a large amount of cavities which significantly increase the surface area for adsorption. A multiple linear regression equation obtained to correlate Ni(II) removal with the controllable factors is: Ni(II) removal(%) = 10.35 × P + 0.045 × T − 1.29 × C + 19.33 × D + 0.09 × t − 59.83. This equation predicts Ni(II) removal well and can be used for estimating Ni(II) removal during the design stage of Ni(II) removal by calcined OSP. Thus, OSP can be used to remove nickel effectively and the formula for removal prediction is developed for practical applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Environmental Management Elsevier

Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method

Loading next page...
 
/lp/elsevier/process-optimization-for-ni-ii-removal-from-wastewater-by-calcined-RO7O6JhwSJ
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0301-4797
D.O.I.
10.1016/j.jenvman.2015.07.024
Publisher site
See Article on Publisher Site

Abstract

Waste oyster shells cause great environmental concerns and nickel is a harmful heavy metal. Therefore, we applied the Taguchi method to take care of both issues by optimizing the controllable factors for Ni(II) removal by calcined oyster shell powders (OSP), including the pH (P), OSP calcined temperature (T), Ni(II) concentration (C), OSP dose (D), and contact time (t). The results show that their percentage contribution in descending order is P (64.3%) > T (18.9%) > C (8.8%) > D (5.1%) > t (1.7%). The optimum condition is pH of 10 and OSP calcined temperature of 900 °C. Under the optimum condition, the Ni(II) can be removed almost completely; the higher the pH, the more the precipitation; the higher the calcined temperature, the more the adsorption. The latter is due to the large number of porosities created at the calcination temperature of 900 °C. The porosities generate a large amount of cavities which significantly increase the surface area for adsorption. A multiple linear regression equation obtained to correlate Ni(II) removal with the controllable factors is: Ni(II) removal(%) = 10.35 × P + 0.045 × T − 1.29 × C + 19.33 × D + 0.09 × t − 59.83. This equation predicts Ni(II) removal well and can be used for estimating Ni(II) removal during the design stage of Ni(II) removal by calcined OSP. Thus, OSP can be used to remove nickel effectively and the formula for removal prediction is developed for practical applications.

Journal

Journal of Environmental ManagementElsevier

Published: Sep 15, 2015

References

  • Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells
    Alidoust, D.; Kawahigashi, M.; Yoshizawa, S.; Sumida, H.; Watanabe, M.
  • Evaluation of equilibrium, kinetic and thermodynamic parameters for biosorption of nickel(II) ions onto bacteria strain, Rhodococcus opacus
    Cayllahua, J.E.B.; de Carvalho, R.J.; Torem, M.L.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off