Process modeling for parametric study on oil palm empty fruit bunch steam gasification for hydrogen production

Process modeling for parametric study on oil palm empty fruit bunch steam gasification for... Biomass steam gasification with in-situ carbon dioxide capture using CaO exhibits good prospects for the production of hydrogen rich gas. The present work focuses on the process modeling for hydrogen production from oil palm empty fruit bunch (EFB) using MATLAB for parametric study. The model incorporates the reaction kinetics calculations of the steam gasification of EFB (C 3.4 H 4.1 O 3.3 ) with in-situ CO 2 capture, as well as mass and energy balances calculations. The developed model is used to investigate the effect of temperature and steam/biomass ratio on the hydrogen purity, yield and efficiency. Based on the results, hydrogen purity of more than 76.1 vol.% can be achieved. The maximum hydrogen yield predicted at the outlet of the gasifier is 102.6 g/kg of EFB. It is found that increment in temperature and steam/biomass ratio promotes hydrogen production. However, it is also predicted that the efficiency decreases when using more steam. Due to the still on-going empirical work, the results are compared with published literatures on different systems. The comparison shows that the results are in agreement to some extent due to the different basis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fuel Processing Technology Elsevier

Process modeling for parametric study on oil palm empty fruit bunch steam gasification for hydrogen production

Loading next page...
 
/lp/elsevier/process-modeling-for-parametric-study-on-oil-palm-empty-fruit-bunch-6pNPcM0OGm
Publisher
Elsevier
Copyright
Copyright © 2011 Elsevier B.V.
ISSN
0378-3820
D.O.I.
10.1016/j.fuproc.2011.08.014
Publisher site
See Article on Publisher Site

Abstract

Biomass steam gasification with in-situ carbon dioxide capture using CaO exhibits good prospects for the production of hydrogen rich gas. The present work focuses on the process modeling for hydrogen production from oil palm empty fruit bunch (EFB) using MATLAB for parametric study. The model incorporates the reaction kinetics calculations of the steam gasification of EFB (C 3.4 H 4.1 O 3.3 ) with in-situ CO 2 capture, as well as mass and energy balances calculations. The developed model is used to investigate the effect of temperature and steam/biomass ratio on the hydrogen purity, yield and efficiency. Based on the results, hydrogen purity of more than 76.1 vol.% can be achieved. The maximum hydrogen yield predicted at the outlet of the gasifier is 102.6 g/kg of EFB. It is found that increment in temperature and steam/biomass ratio promotes hydrogen production. However, it is also predicted that the efficiency decreases when using more steam. Due to the still on-going empirical work, the results are compared with published literatures on different systems. The comparison shows that the results are in agreement to some extent due to the different basis.

Journal

Fuel Processing TechnologyElsevier

Published: Jan 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off