Probiotic properties and stress response of thermotolerant lactic acid bacteria isolated from cooked meat products

Probiotic properties and stress response of thermotolerant lactic acid bacteria isolated from... The aim of this study was to evaluate the probiotic properties of six thermotolerant lactic acid bacteria isolated from cooked meat products. The bacteria were typed, by determination of the DNA sequence of their 16S rRNA coding genes, as one Enterococcus faecium (UAM1 strain) and five Pediococcus pentosaceus (UAM2-UAM6 strains). Under gastric stress conditions the viability of the Pediococci decreased more than five-fold, whereas E. faecium showed a high resistance (61% survival). Exposure to small intestine stress did not drastically affect the survival of any of the strains (less than one-fold decrease), which were able to grow in the presence of 0.3% bile. A hydrophilic surface profile was observed, with higher affinity for chloroform than for xylene. Strains showed high levels of auto-aggregation as well as co-aggregation with Gram-positive and Gram-negative bacterial pathogens. The adherence of E faecium UAM1 to human Caco-2 cells (around 20%) was significantly higher than that obtained with the P. pentosaceus strains (2%–5%) and Lactobacillus acidophilus LA-5 (6%). The overall results indicate that E. faecium UAM1, has probiotic properties that predict its capability to colonize in competition with pathogens in the intestinal tract. This bacterium deserves further investigation for its potential as a component of functional food. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png LWT - Food Science and Technology Elsevier

Probiotic properties and stress response of thermotolerant lactic acid bacteria isolated from cooked meat products

Loading next page...
 
/lp/elsevier/probiotic-properties-and-stress-response-of-thermotolerant-lactic-acid-InNgcCnryr
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0023-6438
D.O.I.
10.1016/j.lwt.2017.12.063
Publisher site
See Article on Publisher Site

Abstract

The aim of this study was to evaluate the probiotic properties of six thermotolerant lactic acid bacteria isolated from cooked meat products. The bacteria were typed, by determination of the DNA sequence of their 16S rRNA coding genes, as one Enterococcus faecium (UAM1 strain) and five Pediococcus pentosaceus (UAM2-UAM6 strains). Under gastric stress conditions the viability of the Pediococci decreased more than five-fold, whereas E. faecium showed a high resistance (61% survival). Exposure to small intestine stress did not drastically affect the survival of any of the strains (less than one-fold decrease), which were able to grow in the presence of 0.3% bile. A hydrophilic surface profile was observed, with higher affinity for chloroform than for xylene. Strains showed high levels of auto-aggregation as well as co-aggregation with Gram-positive and Gram-negative bacterial pathogens. The adherence of E faecium UAM1 to human Caco-2 cells (around 20%) was significantly higher than that obtained with the P. pentosaceus strains (2%–5%) and Lactobacillus acidophilus LA-5 (6%). The overall results indicate that E. faecium UAM1, has probiotic properties that predict its capability to colonize in competition with pathogens in the intestinal tract. This bacterium deserves further investigation for its potential as a component of functional food.

Journal

LWT - Food Science and TechnologyElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off