Printable low-cost and flexible carbon nanotube buckypaper motion sensors

Printable low-cost and flexible carbon nanotube buckypaper motion sensors Wearable technology, which features affordable and flexible sensors integrated into fabrics and garments to detect both deliberate and subtle body movements, will reshape the way we approach self-rehabilitation, physical training, and many high-dexterity tasks by harvesting data about the wearer's activity. Metallic and semi-conductor sensors are currently the most commercially viable sensors. Metallic sensors designs are low profile and flexible; however, they are limited by low sensitivity and complex manufacturing. Semi-conductor sensor designs are highly sensitive but limited by their rigidity and brittle nature. Wearable sensors that are low profile, flexible, and sensitive to micro-strains are highly desired. We have developed a printable and low profile strain sensor using multi-wall carbon nanotube thin films called buckypaper (MWCNT-BP). Our tests indicate that the buckypaper sensors are 77% more sensitive than similar sensor designs. This paper explains the low-cost printing technology and displays the sensors' performance after integration into a fabric glove. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Printable low-cost and flexible carbon nanotube buckypaper motion sensors

Loading next page...
 
/lp/elsevier/printable-low-cost-and-flexible-carbon-nanotube-buckypaper-motion-n1uzQxt605
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2017.07.048
Publisher site
See Article on Publisher Site

Abstract

Wearable technology, which features affordable and flexible sensors integrated into fabrics and garments to detect both deliberate and subtle body movements, will reshape the way we approach self-rehabilitation, physical training, and many high-dexterity tasks by harvesting data about the wearer's activity. Metallic and semi-conductor sensors are currently the most commercially viable sensors. Metallic sensors designs are low profile and flexible; however, they are limited by low sensitivity and complex manufacturing. Semi-conductor sensor designs are highly sensitive but limited by their rigidity and brittle nature. Wearable sensors that are low profile, flexible, and sensitive to micro-strains are highly desired. We have developed a printable and low profile strain sensor using multi-wall carbon nanotube thin films called buckypaper (MWCNT-BP). Our tests indicate that the buckypaper sensors are 77% more sensitive than similar sensor designs. This paper explains the low-cost printing technology and displays the sensors' performance after integration into a fabric glove.

Journal

Materials & designElsevier

Published: Nov 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off